Medical Research Council Institute of Hearing Research, School of Medicine, University of Nottingham, Nottingham, UK.
School of Life Sciences, University of Nottingham, Nottingham, UK.
Eur J Neurosci. 2020 Feb;51(4):963-983. doi: 10.1111/ejn.14572. Epub 2019 Oct 10.
The gaseous free radical, nitric oxide (NO) acts as a ubiquitous neuromodulator, contributing to synaptic plasticity in a complex way that can involve either long term potentiation or depression. It is produced by neuronal nitric oxide synthase (nNOS) which is presynaptically expressed and also located postsynaptically in the membrane and cytoplasm of a subpopulation of each major neuronal type in the ventral cochlear nucleus (VCN). We have used iontophoresis in vivo to study the effect of the NOS inhibitor L-NAME (L-NG-Nitroarginine methyl ester) and the NO donors SIN-1 (3-Morpholinosydnonimine hydrochloride) and SNOG (S-Nitrosoglutathione) on VCN units under urethane anaesthesia. Collectively, both donors produced increases and decreases in driven and spontaneous firing rates of some neurones. Inhibition of endogenous NO production with L-NAME evoked a consistent increase in driven firing rates in 18% of units without much effect on spontaneous rate. This reduction of gain produced by endogenous NO was mirrored when studying the effect of L-NAME on NMDA(N-Methyl-D-aspartic acid)-evoked excitation, with 30% of units showing enhanced NMDA-evoked excitation during L-NAME application (reduced NO levels). Approximately 25% of neurones contain nNOS and the NO produced can modulate the firing rate of the main principal cells: medium stellates (choppers), large stellates (onset responses) and bushy cells (primary-like responses). The main endogenous role of NO seems to be to partly suppress driven firing rates associated with NMDA channel activity but there is scope for it to increase neural gain if there were a pathological increase in its production following hearing loss.
气态自由基一氧化氮 (NO) 作为一种普遍存在的神经调质,以一种复杂的方式参与突触可塑性,这种方式既可以涉及长时程增强,也可以涉及长时程抑制。它是由神经元型一氧化氮合酶 (nNOS) 产生的,nNOS 在前突触表达,也位于耳蜗腹核 (VCN) 中每种主要神经元类型的后突触膜和细胞质中。我们使用活体离子电泳技术研究了 NOS 抑制剂 L-NAME(L-NG-硝基精氨酸甲酯)和 NO 供体 SIN-1(3-吗啉代-sydnonimine 盐酸盐)和 SNOG(S-亚硝基谷胱甘肽)对乌头酸麻醉下 VCN 单位的影响。这两种供体共同增加和减少了一些神经元的驱动和自发放电率。内源性 NO 产生的抑制作用 L-NAME 引起 18%的单位的驱动放电率持续增加,而对自发率的影响不大。当研究 L-NAME 对 NMDA(N-甲基-D-天冬氨酸)诱发兴奋的影响时,这种内源性 NO 产生的增益降低得到了反映,30%的单位在 L-NAME 应用期间表现出 NMDA 诱发兴奋增强(NO 水平降低)。大约 25%的神经元含有 nNOS,产生的 NO 可以调节主要主细胞的放电率:中型星状细胞(切割器)、大型星状细胞(起始反应)和毛细胞(类似初级反应)。NO 的主要内源性作用似乎是部分抑制与 NMDA 通道活性相关的驱动放电率,但如果听力损失后其产生病理性增加,它也有增加神经增益的空间。