文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

耳鸣和听觉过敏中的中枢增益控制。

Central gain control in tinnitus and hyperacusis.

作者信息

Auerbach Benjamin D, Rodrigues Paulo V, Salvi Richard J

机构信息

Department of Communicative Disorders and Sciences, Center for Hearing and Deafness, University at Buffalo, The State University of New York , Buffalo, NY , USA.

出版信息

Front Neurol. 2014 Oct 24;5:206. doi: 10.3389/fneur.2014.00206. eCollection 2014.


DOI:10.3389/fneur.2014.00206
PMID:25386157
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC4208401/
Abstract

Sensorineural hearing loss induced by noise or ototoxic drug exposure reduces the neural activity transmitted from the cochlea to the central auditory system. Despite a reduced cochlear output, neural activity from more central auditory structures is paradoxically enhanced at suprathreshold intensities. This compensatory increase in the central auditory activity in response to the loss of sensory input is referred to as central gain enhancement. Enhanced central gain is hypothesized to be a potential mechanism that gives rise to hyperacusis and tinnitus, two debilitating auditory perceptual disorders that afflict millions of individuals. This review will examine the evidence for gain enhancement in the central auditory system in response to cochlear damage. Further, it will address the potential cellular and molecular mechanisms underlying this enhancement and discuss the contribution of central gain enhancement to tinnitus and hyperacusis. Current evidence suggests that multiple mechanisms with distinct temporal and spectral profiles are likely to contribute to central gain enhancement. Dissecting the contributions of these different mechanisms at different levels of the central auditory system is essential for elucidating the role of central gain enhancement in tinnitus and hyperacusis and, most importantly, the development of novel treatments for these disorders.

摘要

由噪声或耳毒性药物暴露引起的感音神经性听力损失会减少从耳蜗传递到中枢听觉系统的神经活动。尽管耳蜗输出减少,但在阈上强度时,来自更中枢听觉结构的神经活动却反常地增强。这种因感觉输入丧失而导致的中枢听觉活动的代偿性增加被称为中枢增益增强。中枢增益增强被认为是一种潜在机制,可引发听觉过敏和耳鸣这两种折磨数百万人的使人衰弱的听觉感知障碍。本综述将研究中枢听觉系统中因耳蜗损伤而导致增益增强的证据。此外,它将探讨这种增强背后潜在的细胞和分子机制,并讨论中枢增益增强对耳鸣和听觉过敏的影响。目前的证据表明,具有不同时间和频谱特征的多种机制可能导致中枢增益增强。剖析这些不同机制在中枢听觉系统不同水平上的作用,对于阐明中枢增益增强在耳鸣和听觉过敏中的作用至关重要,最重要的是,对于开发针对这些疾病的新疗法也至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/4208401/099418c70cc7/fneur-05-00206-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/4208401/8d30264bb0ef/fneur-05-00206-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/4208401/ff05beb0234e/fneur-05-00206-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/4208401/f8206a0667a3/fneur-05-00206-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/4208401/e615b2dd8071/fneur-05-00206-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/4208401/986cf22d40b6/fneur-05-00206-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/4208401/380493836b07/fneur-05-00206-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/4208401/e9fa9d22e3fa/fneur-05-00206-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/4208401/099418c70cc7/fneur-05-00206-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/4208401/8d30264bb0ef/fneur-05-00206-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/4208401/ff05beb0234e/fneur-05-00206-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/4208401/f8206a0667a3/fneur-05-00206-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/4208401/e615b2dd8071/fneur-05-00206-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/4208401/986cf22d40b6/fneur-05-00206-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/4208401/380493836b07/fneur-05-00206-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/4208401/e9fa9d22e3fa/fneur-05-00206-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f09a/4208401/099418c70cc7/fneur-05-00206-g008.jpg

相似文献

[1]
Central gain control in tinnitus and hyperacusis.

Front Neurol. 2014-10-24

[2]
Functional Neuroanatomy of Salicylate- and Noise-Induced Tinnitus and Hyperacusis.

Curr Top Behav Neurosci. 2021

[3]
Review: Neural Mechanisms of Tinnitus and Hyperacusis in Acute Drug-Induced Ototoxicity.

Am J Audiol. 2021-10-11

[4]
Advances in the neurobiology of hearing disorders: recent developments regarding the basis of tinnitus and hyperacusis.

Prog Neurobiol. 2013-9-6

[5]
Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility.

Hear Res. 2018-6-12

[6]
A Role for KCNQ Channels on Cell Type-Specific Plasticity in Mouse Auditory Cortex after Peripheral Damage.

J Neurosci. 2023-3-29

[7]
Enhanced Central Neural Gain Compensates Acoustic Trauma-induced Cochlear Impairment, but Unlikely Correlates with Tinnitus and Hyperacusis.

Neuroscience. 2018-12-29

[8]
Tinnitus and hyperacusis: Contributions of paraflocculus, reticular formation and stress.

Hear Res. 2017-6

[9]
Inner Hair Cell Loss Disrupts Hearing and Cochlear Function Leading to Sensory Deprivation and Enhanced Central Auditory Gain.

Front Neurosci. 2017-1-18

[10]
A review of auditory gain, low-level noise and sound therapy for tinnitus and hyperacusis.

Int J Audiol. 2019-9-9

引用本文的文献

[1]
Cell-type-specific plasticity in synaptic, intrinsic, and sound response properties of deep-layer auditory cortical neurons after noise trauma.

bioRxiv. 2025-8-15

[2]
Neuropeptide Y mRNA expression in the aging inferior colliculus of fischer brown norway rats.

Front Aging Neurosci. 2025-7-23

[3]
The daily auditory environments of people with tinnitus.

Sci Rep. 2025-7-30

[4]
Synaptic properties of layer 6 auditory corticothalamic inputs in normal hearing and noise-induced hearing loss.

bioRxiv. 2025-7-11

[5]
Tonotopically distinct OFF responses arise in the mouse auditory midbrain following sideband suppression.

bioRxiv. 2025-7-3

[6]
Language-agnostic, Automated Assessment of Listeners' Speech Recall Using Large Language Models.

Trends Hear. 2025

[7]
Sound-evoked plasticity differentiates tinnitus from non-tinnitus mice.

Front Neurosci. 2025-4-14

[8]
Tinnitus in patients with orofacial complaints.

Head Face Med. 2025-4-25

[9]
Can Mismatch Negativity Be Used as an Indicator to Predict Central Auditory Deficits in Individuals with Normal Hearing?

Audiol Res. 2025-4-16

[10]
The Auditory Brainstem Response Diagnoses Alzheimer-Like Disease in the 5xFAD Mouse Model.

eNeuro. 2025-4-23

本文引用的文献

[1]
Hearing in noisy environments: noise invariance and contrast gain control.

J Physiol. 2014-8-15

[2]
Salicylate-induced auditory perceptual disorders and plastic changes in nonclassical auditory centers in rats.

Neural Plast. 2014-5-7

[3]
Loudness perception affected by high doses of salicylate--a behavioral model of hyperacusis.

Behav Brain Res. 2014-9-1

[4]
Review of salicylate-induced hearing loss, neurotoxicity, tinnitus and neuropathophysiology.

Acta Otorhinolaryngol Ital. 2014-4

[5]
Specialized prefrontal "auditory fields": organization of primate prefrontal-temporal pathways.

Front Neurosci. 2014-4-16

[6]
Underlying mechanisms of tinnitus: review and clinical implications.

J Am Acad Audiol. 2014-1

[7]
Phenotypic characteristics of hyperacusis in tinnitus.

PLoS One. 2014-1-31

[8]
Stimulus timing-dependent plasticity in dorsal cochlear nucleus is altered in tinnitus.

J Neurosci. 2013-12-11

[9]
Cortical plasticity, excitatory-inhibitory balance, and sensory perception.

Prog Brain Res. 2013

[10]
Effects of cochlear ablation on amino acid levels in the rat cochlear nucleus and superior olive.

Hear Res. 2014-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索