Suppr超能文献

使用基于组装和基于图谱的工具来表征微卫星多态性。

Characterizing microsatellite polymorphisms using assembly-based and mapping-based tools.

作者信息

Demir Gülfem, Alkan Can

机构信息

Department of Computer Engineering, Faculty of Engineering, Bilkent University, Bilkent, Ankara Turkey.

出版信息

Turk J Biol. 2019 Aug 5;43(4):264-273. doi: 10.3906/biy-1903-16. eCollection 2019.

Abstract

Microsatellite polymorphism has always been a challenge for genome assembly and sequence alignment due to sequencing errors, short read lengths, and high incidence of polymerase slippage in microsatellite regions. Despite the information they carry being very valuable, microsatellite variations have not gained enough attention to be a routine step in genome sequence analysis pipelines. After the completion of the 1000 Genomes Project, which aimed to establish the most detailed genetic variation catalog for humans, the consortium released only two microsatellite prediction sets generated by two tools. Many other large research efforts have failed to shed light on microsatellite variations. We evaluated the performance of three different local assembly methods on three different experimental settings, focusing on genotype-based performance, coverage impact, and preprocessing including flanking regions. All these experiments supported our initial expectations on assembly. We also demonstrate that overlap-layout-consensus (OLC)-basedassembly methods show higher sensitivity to microsatellite variant calling when compared to a de Bruijn graph-based approach. We conclude that assembly with OLC is the better method for genotyping microsatellites. Our pipeline is available at https://github.com/gulfemd/STRAssembly.

摘要

由于测序错误、读长较短以及微卫星区域中聚合酶滑动的高发生率,微卫星多态性一直是基因组组装和序列比对的一项挑战。尽管微卫星携带的信息非常有价值,但微卫星变异尚未得到足够重视,未能成为基因组序列分析流程中的常规步骤。旨在建立人类最详细遗传变异目录的千人基因组计划完成后,该联盟仅发布了由两种工具生成的两个微卫星预测集。许多其他大型研究工作也未能揭示微卫星变异情况。我们在三种不同的实验设置下评估了三种不同局部组装方法的性能,重点关注基于基因型的性能、覆盖范围影响以及包括侧翼区域在内的预处理。所有这些实验都支持了我们对组装的初步预期。我们还证明,与基于德布鲁因图的方法相比,基于重叠布局一致(OLC)的组装方法在微卫星变异检测方面表现出更高的灵敏度。我们得出结论,使用OLC进行组装是对微卫星进行基因分型的更好方法。我们的流程可在https://github.com/gulfemd/STRAssembly获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96f1/6710001/a3c06a5b4369/turkjbio-43-264-fig001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验