Suppr超能文献

将天气的影响纳入蝴蝶迁飞的机理模型。

Integrating the influence of weather into mechanistic models of butterfly movement.

作者信息

Evans Luke C, Sibly Richard M, Thorbek Pernille, Sims Ian, Oliver Tom H, Walters Richard J

机构信息

1School of Biological Sciences, University of Reading, Whiteknights, PO Box 217, Berkshire, Reading RG6 6AH UK.

2Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY UK.

出版信息

Mov Ecol. 2019 Sep 2;7:24. doi: 10.1186/s40462-019-0171-7. eCollection 2019.

Abstract

BACKGROUND

Understanding the factors influencing movement is essential to forecasting species persistence in a changing environment. Movement is often studied using mechanistic models, extrapolating short-term observations of individuals to longer-term predictions, but the role of weather variables such as air temperature and solar radiation, key determinants of ectotherm activity, are generally neglected. We aim to show how the effects of weather can be incorporated into individual-based models of butterfly movement thus allowing analysis of their effects.

METHODS

We constructed a mechanistic movement model and calibrated it with high precision movement data on a widely studied species of butterfly, the meadow brown (), collected over a 21-week period at four sites in southern England. Day time temperatures during the study ranged from 14.5 to 31.5 °C and solar radiation from heavy cloud to bright sunshine. The effects of weather are integrated into the individual-based model through weather-dependent scaling of parametric distributions representing key behaviours: the durations of flight and periods of inactivity.

RESULTS

Flight speed was unaffected by weather, time between successive flights increased as solar radiation decreased, and flight duration showed a unimodal response to air temperature that peaked between approximately 23 °C and 26 °C. After validation, the model demonstrated that weather alone can produce a more than two-fold difference in predicted weekly displacement.

CONCLUSIONS

Individual Based models provide a useful framework for integrating the effect of weather into movement models. By including weather effects we are able to explain a two-fold difference in movement rate of consistent with inter-annual variation in dispersal measured in population studies. Climate change for the studied populations is expected to decrease activity and dispersal rates since these butterflies already operate close to their thermal optimum.

摘要

背景

了解影响物种迁移的因素对于预测其在不断变化的环境中的存续至关重要。人们常使用机械模型来研究迁移,即将个体的短期观测结果外推至长期预测,但诸如气温和太阳辐射等天气变量(变温动物活动的关键决定因素)的作用通常被忽视。我们旨在展示如何将天气影响纳入基于个体的蝴蝶迁移模型,从而能够分析其影响。

方法

我们构建了一个机械迁移模型,并用在英国南部四个地点为期21周收集的、关于一种广泛研究的蝴蝶——草地褐蝶()的高精度迁移数据对其进行校准。研究期间白天温度范围为14.5至31.5摄氏度,太阳辐射从浓云到充足日照都有。天气影响通过对代表关键行为(飞行持续时间和静止期)的参数分布进行与天气相关的缩放,被整合到基于个体的模型中。

结果

飞行速度不受天气影响,连续飞行之间的时间间隔随着太阳辐射的减少而增加,飞行持续时间对气温呈现单峰响应,在约23摄氏度至26摄氏度之间达到峰值。经过验证后,该模型表明仅天气因素就能使预测的每周位移产生两倍以上的差异。

结论

基于个体的模型为将天气影响纳入迁移模型提供了一个有用的框架。通过纳入天气影响,我们能够解释迁移速率两倍的差异,这与种群研究中测量的扩散年际变化一致。由于这些蝴蝶已经接近其热最优状态,预计研究种群的气候变化将降低其活动和扩散速率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad9a/6717957/084f44001a60/40462_2019_171_Fig1_HTML.jpg

相似文献

1
Integrating the influence of weather into mechanistic models of butterfly movement.
Mov Ecol. 2019 Sep 2;7:24. doi: 10.1186/s40462-019-0171-7. eCollection 2019.
2
Weather explains high annual variation in butterfly dispersal.
Proc Biol Sci. 2016 Jul 27;283(1835). doi: 10.1098/rspb.2016.0413.
3
The importance of including habitat-specific behaviour in models of butterfly movement.
Oecologia. 2020 Jun;193(2):249-259. doi: 10.1007/s00442-020-04638-4. Epub 2020 Apr 6.
4
Beyond climate envelopes: effects of weather on regional population trends in butterflies.
Oecologia. 2011 Oct;167(2):559-71. doi: 10.1007/s00442-011-2007-z. Epub 2011 May 18.
6
Behavior underpins the predictive power of a trait-based model of butterfly movement.
Ecol Evol. 2020 Mar 6;10(7):3200-3208. doi: 10.1002/ece3.5957. eCollection 2020 Apr.
7
Thermal biology of flight in a butterfly: genotype, flight metabolism, and environmental conditions.
Ecol Evol. 2015 Nov 10;5(23):5539-51. doi: 10.1002/ece3.1758. eCollection 2015 Dec.
8
Fine-scale climate change: modelling spatial variation in biologically meaningful rates of warming.
Glob Chang Biol. 2017 Jan;23(1):256-268. doi: 10.1111/gcb.13343. Epub 2016 Jun 1.
9
The influence of chalk grasslands on butterfly phenology and ecology.
Ecol Evol. 2021 Oct 7;11(21):14521-14539. doi: 10.1002/ece3.8111. eCollection 2021 Nov.
10
Non-random dispersal in the butterfly Maniola jurtina: implications for metapopulation models.
Proc Biol Sci. 2000 Aug 7;267(1452):1505-10. doi: 10.1098/rspb.2000.1171.

引用本文的文献

1
Distribution and Influences on Butterfly Diversity in Urban Park Green Spaces: A Case Study of Harbin, China.
Ecol Evol. 2025 Jun 12;15(6):e71554. doi: 10.1002/ece3.71554. eCollection 2025 Jun.
2
.
J Insect Conserv. 2024;28(5):923-933. doi: 10.1007/s10841-024-00556-5. Epub 2024 Feb 5.
3
The importance of including habitat-specific behaviour in models of butterfly movement.
Oecologia. 2020 Jun;193(2):249-259. doi: 10.1007/s00442-020-04638-4. Epub 2020 Apr 6.
4
Data on the movement behaviour of four species of grassland butterfly.
Data Brief. 2019 Oct 4;27:104611. doi: 10.1016/j.dib.2019.104611. eCollection 2019 Dec.

本文引用的文献

1
Coupling movement and landscape ecology for animal conservation in production landscapes.
Proc Biol Sci. 2018 Jan 10;285(1870). doi: 10.1098/rspb.2017.2272.
2
The power-speed relationship is U-shaped in two free-flying hawkmoths ().
J R Soc Interface. 2017 Sep;14(134). doi: 10.1098/rsif.2017.0372.
3
A QUANTITATIVE GENETIC ANALYSIS OF THERMAL SENSITIVITY IN THE LOCOMOTOR PERFORMANCE CURVE OF APHIDIUS ERVI.
Evolution. 1996 Aug;50(4):1560-1572. doi: 10.1111/j.1558-5646.1996.tb03928.x.
5
Thermoregulation and the determinants of heat transfer in Colias butterflies.
Oecologia. 1982 Apr;53(1):27-33. doi: 10.1007/BF00377132.
6
Morphological and physiological determinants of local adaptation to climate in Rocky Mountain butterflies.
Conserv Physiol. 2016 Sep 22;4(1):cow035. doi: 10.1093/conphys/cow035. eCollection 2016.
7
Configuration of the thermal landscape determines thermoregulatory performance of ectotherms.
Proc Natl Acad Sci U S A. 2016 Sep 20;113(38):10595-600. doi: 10.1073/pnas.1604824113. Epub 2016 Sep 6.
8
Weather explains high annual variation in butterfly dispersal.
Proc Biol Sci. 2016 Jul 27;283(1835). doi: 10.1098/rspb.2016.0413.
10
Minimum area requirements for an at-risk butterfly based on movement and demography.
Conserv Biol. 2016 Feb;30(1):103-12. doi: 10.1111/cobi.12588. Epub 2015 Oct 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验