Computation and Simulation Unit (Analytical Discipline and Centralized Instrument Facility), CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India.
Academy of Scientific and Innovative Research, CSIR-CSMCRI, Bhavnagar, Gujarat, India.
J Biomol Struct Dyn. 2020 Aug;38(13):3856-3866. doi: 10.1080/07391102.2019.1665587. Epub 2019 Sep 15.
Antibiotics resistance is becoming a serious problem associated with fatalities and suffering patients. New antibiotics that can target the broader spectrum of cellular processes are warranted. One of the recent approaches in this regard is to target the special type of RNA riboswitches in bacteria. In this report, we have explored the mechanistic pathways of ligand-dependent conformational changes of flavin mononucleotide (FMN) riboswitch using molecular dynamics (MD) simulation studies. Cognate ligands FMN and riboflavin (RBF) have shown very different behavior with FMN riboswitch in terms of their role in the gene regulation process. These two ligands have similar scaffold, except the terminal phosphate group in FMN ligand. The MD simulations reveal that the binding of FMN ligand with the riboswitch does not lead to global folding of structure, rather lead to local changes in riboswitch structure. The binding free energy calculated with molecular mechanics Poisson-Boltzmann surface area method suggests the stronger binding of FMN than RBF to the riboswitch and electrostatic energy contributes chiefly to stabilize the complex. Further, the hydrogen bonding analysis identified the key binding site residues G11, G32, G62 of the riboswitch with FMN and RBF. The critical role of the phosphate group in the FMN ligand for binding with the active site of a riboswitch is also borne out in this study. These results unravel the importance of functional groups in natural ligands on designing newer ligands for FMN riboswitch as new antibiotics in the future.Communicated by Ramaswamy H. Sarma.
抗生素耐药性成为与患者死亡和痛苦相关的严重问题。需要开发能够针对更广泛细胞过程的新型抗生素。在这方面,最近的一种方法是针对细菌中特殊类型的 RNA 核糖开关。在本报告中,我们使用分子动力学(MD)模拟研究探索了黄素单核苷酸(FMN)核糖开关配体依赖性构象变化的机制途径。在基因调控过程中,FMN 配体和核黄素(RBF)这两种类似物表现出非常不同的行为。这两种配体具有相似的支架,除了 FMN 配体的末端磷酸基团。MD 模拟表明,FMN 配体与核糖开关的结合不会导致结构的整体折叠,而是导致核糖开关结构的局部变化。用分子力学泊松-玻尔兹曼表面面积法计算的结合自由能表明,FMN 与核糖开关的结合比 RBF 更强,静电能主要有助于稳定复合物。此外,氢键分析确定了核糖开关与 FMN 和 RBF 的关键结合位点残基 G11、G32、G62。本研究还证实了 FMN 配体中磷酸基团在与核糖开关活性位点结合中的关键作用。这些结果揭示了天然配体中功能基团在设计 FMN 核糖开关新型配体作为未来新型抗生素中的重要性。由 Ramaswamy H. Sarma 传达。