Suppr超能文献

使用基于石墨烯增强拉曼光谱(GERS)的斯塔克频移技术测量电极表面的局域电场和局域电荷密度。

Measuring Local Electric Fields and Local Charge Densities at Electrode Surfaces Using Graphene-Enhanced Raman Spectroscopy (GERS)-Based Stark-Shifts.

机构信息

Department of Chemistry , Pennsylvania State University , University Park , Pennsylvania 16802 , United States.

出版信息

ACS Appl Mater Interfaces. 2019 Oct 2;11(39):36252-36258. doi: 10.1021/acsami.9b11892. Epub 2019 Sep 23.

Abstract

We report spectroscopic measurements of the local electric fields and local charge densities at electrode surfaces using graphene-enhanced Raman spectroscopy (GERS) based on the Stark-shifts of surface-bound molecules and the band frequency shift in graphene. Here, monolayer graphene is used as the working electrode in a three-terminal potentiostat while Raman spectra are collected in situ under applied electrochemical potentials using a water immersion lens. First, a thin layer (1 Å) of copper(II) phthalocyanine (CuPc) molecules are deposited on monolayer graphene by thermal evaporation. GERS spectra are then taken in an aqueous solution as a function of the applied electrochemical potential. The shifts in vibrational frequencies of the graphene band and CuPc are obtained simultaneously and correlated. The upshifts in the band Raman mode are used to determine the free carrier density in the graphene sheet under these applied potentials. Of the three dominant peaks in the Raman spectra of CuPc (i.e., 1531, 1450, and 1340 cm), only the 1531 cm peak exhibits Stark-shifts and can, thus, be used to report the local electric field strength at the electrode surface under electrochemical working conditions. Between applied electrochemical potentials from -0.8 V to 0.8 V vs NHE, the free carrier density in the graphene electrode spans a range from -4 × 10 cm to 2 × 10 cm. Corresponding Stark-shifts in the CuPc peak around 1531 cm are observed up to 1.0 cm over a range of electric field strengths between -3.78 × 10 and 1.85 × 10 V/cm. Slightly larger Stark-shifts are observed in a 1 M KCl solution, compared to those observed in DI water, as expected based on the higher ion concentration of the electrolyte. Based on our data, we determine the Stark shift tuning rate to be 0.178 cm/ (10 V/cm), which is relatively small due to the planar nature of the CuPc molecule, which largely lies perpendicular to the electric field at this electrode surface. Computational simulations using density functional theory (DFT) predict similar Stark shifts and provide a detailed atomistic picture of the electric field-induced perturbations to the surface-bound CuPc molecules.

摘要

我们通过基于石墨烯增强拉曼光谱(GERS)的斯塔克位移的表面结合分子和石墨烯的能带频移报告了在电极表面处的局部电场和局部电荷密度的光谱测量。这里,在三端电势计中使用单层石墨烯作为工作电极,同时在施加电化学电势时原位收集使用水浸透镜的拉曼光谱。首先,通过热蒸发将一层(1 Å)铜(II)酞菁(CuPc)分子沉积在单层石墨烯上。然后,作为施加电化学电势的函数,在水溶液中采集 GERS 光谱。同时获得石墨烯带和 CuPc 的振动频率位移并进行关联。石墨烯带的上移拉曼模式用于确定在这些施加的电势下石墨烯片的自由载流子密度。在 CuPc 的三个主要拉曼峰(即 1531、1450 和 1340 cm)中,只有 1531 cm 峰表现出斯塔克位移,因此可用于报告在电化学工作条件下电极表面的局部电场强度。在从-0.8 V 到 0.8 V 相对于 NHE 的施加电化学电势之间,石墨烯电极中的自由载流子密度在-4×10 cm 至 2×10 cm 的范围内变化。在-3.78×10 和 1.85×10 V/cm 之间的电场强度范围内,观察到围绕 1531 cm 的 CuPc 峰的相应斯塔克位移高达 1.0 cm。与在 DI 水中观察到的相比,在 1 M KCl 溶液中观察到的斯塔克位移略大,这是基于电解质的较高离子浓度预期的。根据我们的数据,我们确定斯塔克位移调谐速率为 0.178 cm/(10 V/cm),这相对较小,因为 CuPc 分子的平面性质,其在该电极表面基本上垂直于电场。使用密度泛函理论(DFT)的计算模拟预测了类似的斯塔克位移,并提供了表面结合的 CuPc 分子的电场诱导扰动的详细原子图像。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验