School of Computer, Xi'an University of Posts & Telecommunications, Xi'an, China; Shaanxi Key Laboratory of Network Data Analysis and Intelligent Processing, China.
School of Computer, Xi'an University of Posts & Telecommunications, Xi'an, China.
Neural Netw. 2019 Nov;119:313-322. doi: 10.1016/j.neunet.2019.08.005. Epub 2019 Aug 23.
Heterogeneous domain adaptation aims to exploit the source domain data to train a prediction model for the target domain with different input feature space. Current methods either map the data points from different domains with different feature space to a common latent subspace or use asymmetric projections for learning the classifier. However, these learning methods separate common space learning and shared classifier training. This may lead complex model structure and more parameters to be determined. To appropriately address this problem, we propose a novel bidirectional ECOC projection method, named HDA-ECOC, for heterogeneous domain adaptation. The proposed method projects the inputs and outputs (labels) of two domains into a common ECOC coding space, such that, the common space learning and the shared classifier training can be performed simultaneously. Then, classification of the target testing sample can be directly addressed by an ECOC decoding. Moreover, the unlabeled target data is exploited by estimating the two domains projected instances consistency through a maximum mean discrepancy (MMD) criterion. We formulate this method as a dual convex minimization problem and propose an alternating optimization algorithm for solving it. For performance evaluation, experiments are performed on cross-lingual text classification and cross-domain digital image classification with heterogeneous feature space. The experimental results demonstrate that the proposed method is effective and efficient in solving the heterogeneous domain adaptation problems.
异构域自适应旨在利用源域数据来训练目标域的预测模型,而目标域具有不同的输入特征空间。目前的方法要么将具有不同特征空间的不同域的数据点映射到公共潜在子空间,要么使用非对称投影来学习分类器。然而,这些学习方法将公共空间学习和共享分类器训练分开。这可能导致复杂的模型结构和更多参数需要确定。为了适当解决这个问题,我们提出了一种新颖的双向 ECOC 投影方法,称为 HDA-ECOC,用于异构域自适应。所提出的方法将两个域的输入和输出(标签)投影到一个公共的 ECOC 编码空间中,使得公共空间学习和共享分类器训练可以同时进行。然后,可以通过 ECOC 解码直接解决目标测试样本的分类问题。此外,通过最大均值差异(MMD)准则估计两个域投影实例的一致性,可以利用未标记的目标数据。我们将该方法表示为一个对偶凸最小化问题,并提出了一种交替优化算法来求解它。为了进行性能评估,在跨语言文本分类和具有异构特征空间的跨域数字图像分类上进行了实验。实验结果表明,该方法在解决异构域自适应问题方面是有效和高效的。