Instituto de Matemática, Universidade Federal do Rio de Janeiro, Av. Athos da Silveira Ramos 149, Centro de Tecnologia - Bloco C, Cidade Universitária - Ilha do Fundão, Caixa Postal 68530, 21941-909 Rio de Janeiro, RJ - Brasil.
GIMNAP-Departamento de Matemáticas, Universidad del Bío-Bío, Casilla 5-C, Concepción, Chile and CI2MA, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
Math Biosci Eng. 2019 Jun 5;16(5):5114-5145. doi: 10.3934/mbe.2019257.
In this paper, we propose and analyze a reaction-diffusion model for predator-prey interaction, featuring both prey and predator taxis mediated by nonlocal sensing. Both predator and prey densities are governed by parabolic equations. The prey and predator detect each other indirectly by means of odor or visibility fields, modeled by elliptic equations. We provide uniform estimates in Lebesgue spaces which lead to boundedness and the global well-posedness for the system. Numerical experiments are presented and discussed, allowing us to showcase the dynamical properties of the solutions.
本文提出并分析了一个具有非局部感应的捕食者-被捕食者相互作用的反应扩散模型,其中猎物和捕食者的运动都受到媒介的影响。猎物和捕食者的密度都由抛物型方程控制。猎物和捕食者通过嗅觉或可见度场间接探测对方,这些场由椭圆型方程建模。我们在勒贝格空间中提供一致估计,从而得到系统的有界性和整体适定性。数值实验被提出并讨论,使我们能够展示解决方案的动态特性。