Suppr超能文献

一类食饵染病的捕食-食饵模型的建模与分析

Modeling and analysis of a predator-prey model with disease in the prey.

作者信息

Xiao Y, Chen L

机构信息

Institute of Mathematics, Academy of Mathematics and System Sciences, Academia Sinica, 100080, Beijing, People's Republic of China.

出版信息

Math Biosci. 2001 May;171(1):59-82. doi: 10.1016/s0025-5564(01)00049-9.

Abstract

A system of retarded functional differential equations is proposed as a predator-prey model with disease in the prey. Mathematical analyses of the model equations with regard to invariance of non-negativity, boundedness of solutions, nature of equilibria, permanence and global stability are analyzed. If the coefficient in conversing prey into predator k=k(0) is constant (independent of delay tau;, gestation period), we show that positive equilibrium is locally asymptotically stable when time delay tau; is suitable small, while a loss of stability by a Hopf bifurcation can occur as the delay increases. If k=k(0)e(-dtau;) (d is the death rate of predator), numerical simulation suggests that time delay has both destabilizing and stabilizing effects, that is, positive equilibrium, if it exists, will become stable again for large time delay. A concluding discussion is then presented.

摘要

提出了一个具有时滞的泛函微分方程组作为一个捕食者 - 食饵模型,其中食饵带有疾病。分析了模型方程在非负性不变性、解的有界性、平衡点性质、持久性和全局稳定性方面的数学性质。如果将食饵转化为捕食者的系数(k = k(0))是常数(与延迟(\tau),即妊娠期无关),我们证明当时间延迟(\tau)足够小时,正平衡点是局部渐近稳定的,而随着延迟增加,可能会通过霍普夫分岔发生稳定性丧失。如果(k = k(0)e^{(-d\tau)})((d)是捕食者的死亡率),数值模拟表明时间延迟具有去稳定和稳定两种作用,即如果存在正平衡点,对于大的时间延迟它将再次变得稳定。然后给出了结论性的讨论。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验