State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
J Biol Chem. 2019 Nov 29;294(48):18435-18450. doi: 10.1074/jbc.RA119.008497. Epub 2019 Sep 9.
Fungi of the genus are a rich source of enzymes, such as cellulases and hemicellulases, that can degrade lignocellulosic biomass and are therefore of interest for biotechnological approaches seeking to optimize biofuel production. The essential transcription factor ACE3 is involved in cellulase production in ; however, the mechanism by which ACE3 regulates cellulase activities is unknown. Here, we discovered that the nominal sequence in the genome available through the Joint Genome Institute is erroneously annotated. Moreover, we identified the complete sequence, the ACE3 Zn(II)Cys domain, and the ACE3 DNA-binding sites containing a 5'-CGGAN(T/A)-3' consensus. We found that in addition to its essential role in cellulase production, is required for lactose assimilation and metabolism in Transcriptional profiling with RNA-Seq revealed that deletion down-regulates not only the bulk of the major cellulase, hemicellulase, and related transcription factor genes, but also reduces the expression of lactose metabolism-related genes. Additionally, we demonstrate that ACE3 binds the promoters of many cellulase genes, the cellulose response transporter gene , and transcription factor-encoding genes, including We also observed that XYR1 dimerizes to facilitate cellulase production and that ACE3 interacts with XYR1. Together, these findings uncover how two essential transcriptional activators mediate cellulase gene expression in On the basis of these observations, we propose a model of how the interactions between ACE3, Crt1, and XYR1 control cellulase expression and lactose metabolism in .
是一类富含纤维素酶和半纤维素酶等酶的真菌,这些酶可以降解木质纤维素生物质,因此对于寻求优化生物燃料生产的生物技术方法具有重要意义。关键转录因子 ACE3 参与了 的纤维素酶生产;然而,ACE3 调节纤维素酶活性的机制尚不清楚。在这里,我们发现通过联合基因组研究所提供的 基因组中的 ACE3 序列被错误注释。此外,我们确定了完整的 序列、ACE3 Zn(II)Cys 结构域和包含 5'-CGGAN(T/A)-3' 共识的 ACE3 DNA 结合位点。我们发现,除了在纤维素酶生产中的重要作用外,在 中还需要参与乳糖的同化和代谢。RNA-Seq 转录组分析表明, 缺失不仅下调了大部分主要纤维素酶、半纤维素酶和相关转录因子基因,还降低了与乳糖代谢相关的基因表达。此外,我们证明 ACE3 结合了许多纤维素酶基因、纤维素响应转运蛋白基因 和转录因子编码基因的启动子,包括 我们还观察到 XYR1 二聚化以促进纤维素酶的产生,并且 ACE3 与 XYR1 相互作用。这些发现揭示了两个关键转录激活因子如何在 中调节纤维素酶基因的表达。基于这些观察结果,我们提出了一个模型,说明 ACE3、Crt1 和 XYR1 之间的相互作用如何控制 中的纤维素酶表达和乳糖代谢。