State Key Lab of Bioreactor Engineering, New World Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, P.O.B. 311, Shanghai, 200237, China.
State Key Lab of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
Microb Cell Fact. 2018 May 17;17(1):75. doi: 10.1186/s12934-018-0926-7.
Cellulase can convert lignocellulosic feedstocks into fermentable sugars, which can be used for the industrial production of biofuels and chemicals. The high cost of cellulase production remains a challenge for lignocellulose breakdown. Trichoderma reesei RUT C30 serves as a well-known industrial workhorse for cellulase production. Therefore, the enhancement of cellulase production by T. reesei RUT C30 is of great importance.
Two sets of novel minimal transcriptional activators (DBD-VP16 and DBD-VP16) were designed and expressed in T. reesei RUT C30. Expression of DBD-VP16 and DBD-VP16 improved cellulase production under induction (avicel or lactose) and repression (glucose) conditions, respectively. The strain T under avicel and T under glucose with the highest cellulase activities outperformed other transformants and the parental strain under the corresponding conditions. For T strains, the highest FPase activity was approximately 1.3-fold greater than that of the parental strain RUT C30 at 120 h of cultivation in a shake flask using avicel as the sole carbon source. The FPase activity (U/mg biomass) in T strains was approximately 26.5-fold higher than that of the parental strain RUT C30 at 72 h of cultivation in a shake flask using glucose as the sole carbon source. Furthermore, the crude enzymes produced in the 7-L fermenter from T and T supplemented with commercial β-glucosidase hydrolyzed pretreated corn stover effectively.
These results show that replacing natural transcription factors with minimal transcriptional activators is a powerful strategy to enhance cellulase production in T. reesei. Our current study also offers an alternative genetic engineering strategy for the enhanced production of industrial products by other fungi.
纤维素酶可以将木质纤维素饲料转化为可发酵糖,可用于生物燃料和化学品的工业生产。纤维素酶生产成本高仍然是木质纤维素分解的一个挑战。里氏木霉 Rut C30 作为一种著名的工业用菌,用于纤维素酶的生产。因此,提高里氏木霉 Rut C30 的纤维素酶产量非常重要。
设计并表达了两套新型的最小转录激活子(DBD-VP16 和 DBD-VP16)在里氏木霉 Rut C30 中。DBD-VP16 和 DBD-VP16 的表达分别在诱导(微晶纤维素或乳糖)和抑制(葡萄糖)条件下提高了纤维素酶的产量。在微晶纤维素和葡萄糖条件下,酶活最高的 T 株比其他转化株和相应条件下的亲本株表现更好。对于 T 株,在摇瓶中以微晶纤维素为唯一碳源培养 120 小时时,最高 FPase 活性比亲本株 Rut C30 高约 1.3 倍。在摇瓶中以葡萄糖为唯一碳源培养 72 小时时,T 株的 FPase 活性(U/mg 生物质)比亲本株 Rut C30 高约 26.5 倍。此外,在 7-L 发酵罐中,用商业β-葡萄糖苷酶补充的 T 和 T 株产生的粗酶有效地水解了预处理的玉米秸秆。
这些结果表明,用最小转录激活子替代天然转录因子是提高里氏木霉纤维素酶产量的一种有效策略。我们目前的研究还为其他真菌增强工业产品的生产提供了一种替代的遗传工程策略。