Institut für Organische und Biomolekulare Chemie, Universität Göttingen, Tammannstr. 2, 37077, Göttingen, Germany.
J Am Soc Mass Spectrom. 2019 Oct;30(10):1857-1866. doi: 10.1007/s13361-019-02312-5. Epub 2019 Sep 9.
In contrast to the extensive knowledge of lithium cation affinities and basicities, the thermochemistry of microsolvated lithium cations is much less explored. Here, we determine the relative stabilities of Li(A,B) complexes, n = 2 and 3, by monitoring their gas-phase reactions with A and B substrate molecules, A/B = MeO, EtO, tetrahydrofuran, and MeCN, in a three-dimensional quadrupole-ion trap mass spectrometer. Kinetic analysis of the observed ligand displacement reactions affords equilibrium constants, which are then converted into Gibbs reaction energies. In addition, we use high-level quantum chemical calculations to predict the structures and sequential ligand dissociation energies of the homoleptic Li(A) complexes, n = 1-3. As expected, the ligands dissociate more easily from complexes in higher coordination states. However, the very nature of the ligand also matters. Ligands with different steric demands can, thus, invert their relative Li affinities depending on the coordination state of the metal center. This finding shows that microsolvation of Li can result in specific effects, which are not recognized if the analysis takes into account only simple lithium cation affinities and basicities.
与锂离子亲和力和碱性的广泛知识相比,微溶剂化锂离子的热化学研究要少得多。在这里,我们通过监测它们与 A 和 B 底物分子(A/B=MeO、EtO、四氢呋喃和 MeCN)的气相反应,在三维四极离子阱质谱仪中确定了 Li(A,B)复合物,n=2 和 3 的相对稳定性。观察到的配体置换反应的动力学分析提供了平衡常数,然后将其转换为吉布斯反应能。此外,我们还使用高精度量子化学计算来预测同核配体 Li(A)复合物的结构和顺序配体离解能,n=1-3。正如预期的那样,配体从更高配位数的配合物中更容易离解。然而,配体的性质也很重要。具有不同空间需求的配体可以根据金属中心的配位状态反转其相对的锂离子亲和力。这一发现表明,锂离子的微溶剂化可能会导致特定的影响,如果分析只考虑简单的锂离子亲和力和碱性,则不会识别这些影响。