Quaresma Manuela, Carpenter James, Rachet Bernard
London School of Hygiene & Tropical Medicine, Faculty of Epidemiology & Population Health, London, UK.
London Hub for Trials Methodology Research, MRC Clinical Trials Unit at UCL, London, UK.
Stat Methods Med Res. 2020 Jun;29(6):1700-1714. doi: 10.1177/0962280219874094. Epub 2019 Sep 10.
Excess hazard models became the preferred modelling tool in population-based cancer survival research. In this setting, the model is commonly formulated as the additive decomposition of the overall hazard into two components: the excess hazard due to the cancer of interest and the population hazard due to all other causes of death. We introduce a flexible Bayesian regression model for the log-excess hazard where the baseline log-excess hazard and any non-linear effects of covariates are modelled using low-rank thin plate splines. Using this type of splines will ensure that the log-likelihood function retains tractability not requiring numerical integration. We demonstrate how to derive posterior distributions for the excess hazard and for net survival, a population-level measure of cancer survival that can be derived from excess hazard models. We illustrate the proposed model using survival data for patients diagnosed with colon cancer during 2009 in London, England.
超额风险模型已成为基于人群的癌症生存研究中首选的建模工具。在这种情况下,该模型通常被构建为将总体风险分解为两个部分的加法模型:由感兴趣的癌症导致的超额风险和由所有其他死亡原因导致的人群风险。我们为对数超额风险引入了一种灵活的贝叶斯回归模型,其中基线对数超额风险和协变量的任何非线性效应都使用低秩薄板样条进行建模。使用这种样条将确保对数似然函数保持可处理性,而无需数值积分。我们展示了如何推导超额风险和净生存的后验分布,净生存是一种可从超额风险模型推导得出的人群水平的癌症生存度量。我们使用2009年在英国伦敦被诊断为结肠癌的患者的生存数据来说明所提出的模型。