Suppr超能文献

大间隔部分标签机

Large Margin Partial Label Machine.

作者信息

Chai Jing, Tsang Ivor W, Chen Weijie

出版信息

IEEE Trans Neural Netw Learn Syst. 2020 Jul;31(7):2594-2608. doi: 10.1109/TNNLS.2019.2933530. Epub 2019 Sep 6.

Abstract

Partial label learning (PLL) is a multi-class weakly supervised learning problem where each training instance is associated with a set of candidate labels but only one label is the ground truth. The main challenge of PLL is how to deal with the label ambiguities. Among various disambiguation techniques, large margin (LM)-based algorithms attract much attention due to their powerful discriminative performance. However, existing LM-based algorithms either neglect some potential candidate labels in constructing the margin or introduce auxiliary estimation of class capacities which is generally inaccurate. As a result, their generalization performances are deteriorated. To address the above-mentioned drawbacks, motivated by the optimistic superset loss, we propose an LM Partial LAbel machiNE (LM-PLANE) by extending multi-class support vector machines (SVM) to PLL. Compared with existing LM-based disambiguation algorithms, LM-PLANE considers the margin of all potential candidate labels without auxiliary estimation of class capacities. Furthermore, an efficient cutting plane (CP) method is developed to train LM-PLANE in the dual space. Theoretical insights into the effectiveness and convergence of our CP method are also presented. Extensive experiments on various PLL tasks demonstrate the superiority of LM-PLANE over existing LM based and other representative PLL algorithms in terms of classification accuracy.

摘要

部分标签学习(PLL)是一个多类弱监督学习问题,其中每个训练实例都与一组候选标签相关联,但只有一个标签是真实标签。PLL的主要挑战在于如何处理标签的模糊性。在各种消歧技术中,基于大间隔(LM)的算法因其强大的判别性能而备受关注。然而,现有的基于LM的算法要么在构建间隔时忽略了一些潜在的候选标签,要么引入了通常不准确的类容量辅助估计。因此,它们的泛化性能会变差。为了解决上述缺点,受乐观超集损失的启发,我们通过将多类支持向量机(SVM)扩展到PLL,提出了一种LM部分标签机(LM-PLANE)。与现有的基于LM的消歧算法相比,LM-PLANE考虑了所有潜在候选标签的间隔,而无需对类容量进行辅助估计。此外,还开发了一种有效的切割平面(CP)方法来在对偶空间中训练LM-PLANE。我们还给出了关于CP方法有效性和收敛性的理论见解。在各种PLL任务上进行的大量实验表明,在分类准确率方面,LM-PLANE优于现有的基于LM的算法和其他代表性的PLL算法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验