Suppr超能文献

用于实例相关部分标签学习的变分标签增强

Variational Label Enhancement for Instance-Dependent Partial Label Learning.

作者信息

Xu Ning, Qiao Congyu, Zhao Yuchen, Geng Xin, Zhang Min-Ling

出版信息

IEEE Trans Pattern Anal Mach Intell. 2024 Sep 6;PP. doi: 10.1109/TPAMI.2024.3455260.

Abstract

Partial label learning (PLL) is a form of weakly supervised learning, where each training example is linked to a set of candidate labels, among which only one label is correct. Most existing PLL approaches assume that the incorrect labels in each training example are randomly picked as the candidate labels. However, in practice, this assumption may not hold true, as the candidate labels are often instance-dependent. In this paper, we address the instance-dependent PLL problem and assume that each example is associated with a latent label distribution where the incorrect label with a high degree is more likely to be annotated as a candidate label. Motivated by this consideration, we propose two methods VALEN and MILEN, which train the predictive model via utilizing the latent label distributions recovered by the label enhancement process. Specifically, VALEN recovers the latent label distributions via inferring the variational posterior density parameterized by an inference model with the deduced evidence lower bound. MILEN recovers the latent label distribution by adopting the variational approximation to bound the mutual information among the latent label distribution, observed labels and augmented instances. Experiments on benchmark and real-world datasets validate the effectiveness of the proposed methods.

摘要

部分标签学习(PLL)是一种弱监督学习形式,其中每个训练示例都与一组候选标签相关联,其中只有一个标签是正确的。大多数现有的PLL方法都假设每个训练示例中的错误标签是随机选择作为候选标签的。然而,在实际中,这个假设可能不成立,因为候选标签通常依赖于实例。在本文中,我们解决了依赖于实例的PLL问题,并假设每个示例都与一个潜在标签分布相关联,其中高度错误的标签更有可能被标注为候选标签。出于这种考虑,我们提出了两种方法VALEN和MILEN,它们通过利用标签增强过程恢复的潜在标签分布来训练预测模型。具体来说,VALEN通过推断由具有推导证据下界的推理模型参数化的变分后验密度来恢复潜在标签分布。MILEN通过采用变分近似来界定潜在标签分布、观察到的标签和增强实例之间的互信息来恢复潜在标签分布。在基准和真实世界数据集上的实验验证了所提出方法的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验