School of Information Management , Wuhan University , Wuhan 430072 , China.
J Chem Theory Comput. 2019 Dec 10;15(12):6882-6894. doi: 10.1021/acs.jctc.9b00420. Epub 2019 Nov 6.
Predicting adsorption energies of reaction intermediates is critical for determining catalytic reaction mechanisms. Here, we present three combined representations for predicting adsorption energies of carbon reforming species on transition-metal surfaces. Among the three combined representations, the Elemental Properties and Spectral London Axilrod-Teller-Muto (EP&SLATM) representation, which uses separate EP and SLATM representations for the surface and adsorbates, yields the lowest mean absolute error (MAE) of ∼0.18 eV with respect to density functional theory (DFT) adsorption formation energies for 68 adsorbates on four low-index metal facets (Cu(111), Pt(111), Pd(111), Ru(0001)). All three combined representations also have lower MAEs compared with linear scaling relations. Notably, two of the combined representations achieve their results using empirical/experimental molecular structures only (i.e., without recourse to structural optimization based on first-principles methods such as DFT). The combined representations enable improved efficiency for predicting heterogeneous catalytic mechanisms using machine learning approaches, largely bypassing expensive electronic structure calculations. Further, we show that the combined representations enable "cross-surface" training with regression and tree-based machine learning methods. That is, to predict adsorption formation energies on a particular catalyst metal, these methods only need a small amount of training samples (20%) on that metal.
预测反应中间体的吸附能对于确定催化反应机制至关重要。在这里,我们提出了三种用于预测碳重整物种在过渡金属表面上吸附能的组合表示方法。在这三种组合表示方法中,元素特性和光谱伦敦艾里德-泰勒-穆托(Elemental Properties and Spectral London Axilrod-Teller-Muto,EP&SLATM)表示方法分别使用表面和吸附物的单独 EP 和 SLATM 表示方法,对于四种低指数金属晶面上的 68 种吸附物,相对于密度泛函理论(DFT)吸附形成能,其平均绝对误差(Mean Absolute Error,MAE)最低约为 0.18 eV。所有三种组合表示方法与线性缩放关系相比,MAE 也较低。值得注意的是,其中两种组合表示方法仅使用经验/实验分子结构即可获得结果(即,不依赖于基于第一性原理方法(例如 DFT)的结构优化)。组合表示方法可通过机器学习方法提高预测多相催化机制的效率,在很大程度上避免了昂贵的电子结构计算。此外,我们还表明,组合表示方法可以通过回归和基于树的机器学习方法进行“跨表面”训练。也就是说,为了预测特定催化剂金属上的吸附形成能,这些方法仅需要该金属上少量的训练样本(20%)。