Wang Jiao, Ke Xizheng, Wang Mingjun
Appl Opt. 2019 Aug 20;58(24):6486-6494. doi: 10.1364/AO.58.006486.
In this paper, we introduce a vortex class of a partially coherent source of Schell type with an electromagnetic Gaussian Schell-model vortex (EGSMV) beam, which is the product of the partially coherent EGSM beam passing through a spiral phase modulator. The analytical expressions for the degree of polarization (DoP) and orientation angle of polarization (OAoP) of the EGSMV beam propagating through atmospheric turbulence are derived. The expressions are used to analyze the influence of topological charge, wavelength, and atmospheric turbulence on the DoP and OAoP of the EGSMV beam, and we come to some new conclusions. The larger the topological charge is, the bigger the dark spot in the center of the partially coherent EGSMV beam, the more dispersed the DoP distribution, and the wider the OAoP distribution are; therefore, there is more information received by the detector when the partially coherent EGSMV beam propagates in atmospheric turbulence. The longer the wavelength is, the smaller the near-surface refractive index structure constant and the larger the inner scale are and the more concentrated the DoP distribution is, but the influence of the outer scale is negligible. The number of petals, which is the shape of the OAoP distribution, is equal to just twice the topological charge. These results provide a theoretical basis for better control of coherent detection in optical communication when the partially coherent EGSMV beam propagating through atmospheric turbulence is used as the local oscillator in a wireless optical communication system.
在本文中,我们引入了一类具有电磁高斯谢尔模型涡旋(EGSMV)光束的部分相干谢尔型源的涡旋,它是部分相干的EGSM光束通过螺旋相位调制器后的产物。推导了EGSMV光束在大气湍流中传输时的偏振度(DoP)和偏振取向角(OAoP)的解析表达式。利用这些表达式分析了拓扑电荷、波长和大气湍流对EGSMV光束的DoP和OAoP的影响,并得出了一些新的结论。拓扑电荷越大,部分相干EGSMV光束中心的暗斑越大,DoP分布越分散,OAoP分布越宽;因此,当部分相干EGSMV光束在大气湍流中传输时,探测器接收到的信息越多。波长越长,近地表折射率结构常数越小,内尺度越大,DoP分布越集中,但外尺度的影响可忽略不计。OAoP分布形状的花瓣数恰好等于拓扑电荷的两倍。这些结果为在无线光通信系统中,当使用在大气湍流中传输的部分相干EGSMV光束作为本地振荡器时,更好地控制光通信中的相干检测提供了理论依据。