Department of Epidemiology and Biostatistics, Indiana University School of Public Health-Bloomington, Bloomington, IN, USA.
Institute of Industrial Science, The University of Tokyo, Tokyo, Japan.
Am J Clin Nutr. 2019 Nov 1;110(5):1231-1239. doi: 10.1093/ajcn/nqz198.
The Goldberg cutoffs are used to decrease bias in self-reported estimates of energy intake (EISR). Whether the cutoffs reduce and eliminate bias when used in regressions of health outcomes has not been assessed.
We examined whether applying the Goldberg cutoffs to data used in nutrition studies could reliably reduce or eliminate bias.
We used data from the Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy (CALERIE), the Interactive Diet and Activity Tracking in American Association of Retired Persons (IDATA) study, and the National Diet and Nutrition Survey (NDNS). Each data set included EISR, energy intake estimated from doubly labeled water (EIDLW) as a reference method, and health outcomes including baseline anthropometric, biomarker, and behavioral measures and fitness test results. We conducted 3 linear regression analyses using EISR, a plausible EISR based on the Goldberg cutoffs (EIG), and EIDLW as an explanatory variable for each analysis. Regression coefficients were denoted ${\hat{\beta }{\rm SR}}$, ${\hat{\beta }{\rm G}}$, and ${\hat{\beta }{\rm DLW}}$, respectively. Using the jackknife method, bias from ${\hat{\beta }{\rm SR}}$ compared with ${\hat{\beta }{\rm DLW}}$ and remaining bias from ${\hat{\beta }{\rm G}}$ compared with ${\hat{\beta }_{\rm DLW}}$ were estimated. Analyses were repeated using Pearson correlation coefficients.
The analyses from CALERIE, IDATA, and NDNS included 218, 349, and 317 individuals, respectively. Using EIG significantly decreased the bias only for a subset of those variables with significant bias: weight (56.1%; 95% CI: 28.5%, 83.7%) and waist circumference (WC) (59.8%; 95% CI: 33.2%, 86.5%) with CALERIE, weight (20.8%; 95% CI: -6.4%, 48.1%) and WC (17.3%; 95% CI: -20.8%, 55.4%) with IDATA, and WC (-9.5%; 95% CI: -72.2%, 53.1%) with NDNS. Furthermore, bias significantly remained even after excluding implausible data for various outcomes. Results obtained with Pearson correlation coefficient analyses were qualitatively consistent.
Some associations between EIG and outcomes remained biased compared with associations between EIDLW and outcomes. Use of the Goldberg cutoffs was not a reliable method for eliminating bias.
Goldberg 截断值用于减少自我报告能量摄入估计值(EISR)中的偏差。当将这些截断值用于健康结果的回归时,它们是否能减少和消除偏差尚未得到评估。
我们研究了在营养研究中应用 Goldberg 截断值是否可以可靠地减少或消除偏差。
我们使用了来自 Comprehensive Assessment of Long-Term Effects of Reducing Intake of Energy(CALERIE)、Interactive Diet and Activity Tracking in American Association of Retired Persons(IDATA)研究和 National Diet and Nutrition Survey(NDNS)的数据。每个数据集都包括 EISR、双标记水(EIDLW)估计的能量摄入作为参考方法,以及健康结果,包括基线人体测量、生物标志物和行为措施以及体能测试结果。我们使用 EISR、基于 Goldberg 截断值的合理 EISR(EIG)和 EIDLW 作为每个分析的解释变量,进行了 3 个线性回归分析。回归系数分别表示为${\hat{\beta }{\rm SR}}$、${\hat{\beta }{\rm G}}$和${\hat{\beta }{\rm DLW}}$。使用刀切法,从${\hat{\beta }{\rm SR}}$与${\hat{\beta }{\rm DLW}}$的偏差和从${\hat{\beta }{\rm G}}$与${\hat{\beta }_{\rm DLW}}$的剩余偏差进行了估计。分析使用 Pearson 相关系数重复进行。
来自 CALERIE、IDATA 和 NDNS 的分析分别纳入了 218、349 和 317 个人。仅在那些具有显著偏差的变量子集上,使用 EIG 显著降低了偏差:体重(56.1%;95%CI:28.5%,83.7%)和腰围(WC)(59.8%;95%CI:33.2%,86.5%)与 CALERIE、体重(20.8%;95%CI:-6.4%,48.1%)和 WC(17.3%;95%CI:-20.8%,55.4%)与 IDATA、WC(-9.5%;95%CI:-72.2%,53.1%)与 NDNS。此外,即使对于各种结果的不可信数据进行了排除,偏差仍然显著存在。使用 Pearson 相关系数分析得到的结果在质量上是一致的。
与 EIDLW 与结果之间的关联相比,EIG 与结果之间的一些关联仍然存在偏差。使用 Goldberg 截断值不是消除偏差的可靠方法。