Suppr超能文献

基于系统发育树的微生物组关联分析。

Phylogenetic tree-based microbiome association test.

机构信息

Department of Public Health Sciences, Graduate School of Public Health, South Korea.

Interdisciplinary Program for Bioinformatics, College of Natural Science, South Korea.

出版信息

Bioinformatics. 2020 Feb 15;36(4):1000-1006. doi: 10.1093/bioinformatics/btz686.

Abstract

MOTIVATION

Ecological patterns of the human microbiota exhibit high inter-subject variation, with few operational taxonomic units (OTUs) shared across individuals. To overcome these issues, non-parametric approaches, such as the Mann-Whitney U-test and Wilcoxon rank-sum test, have often been used to identify OTUs associated with host diseases. However, these approaches only use the ranks of observed relative abundances, leading to information loss, and are associated with high false-negative rates. In this study, we propose a phylogenetic tree-based microbiome association test (TMAT) to analyze the associations between microbiome OTU abundances and disease phenotypes. Phylogenetic trees illustrate patterns of similarity among different OTUs, and TMAT provides an efficient method for utilizing such information for association analyses. The proposed TMAT provides test statistics for each node, which are combined to identify mutations associated with host diseases.

RESULTS

Power estimates of TMAT were compared with existing methods using extensive simulations based on real absolute abundances. Simulation studies showed that TMAT preserves the nominal type-1 error rate, and estimates of its statistical power generally outperformed existing methods in the considered scenarios. Furthermore, TMAT can be used to detect phylogenetic mutations associated with host diseases, providing more in-depth insight into bacterial pathology.

AVAILABILITY AND IMPLEMENTATION

The 16S rRNA amplicon sequencing metagenomics datasets for colorectal carcinoma and myalgic encephalomyelitis/chronic fatigue syndrome are available from the European Nucleotide Archive (ENA) database under project accession number PRJEB6070 and PRJEB13092, respectively. TMAT was implemented in the R package. Detailed information is available at http://healthstat.snu.ac.kr/software/tmat.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

人类微生物组的生态模式表现出高度的个体间变异性,个体间很少有共享的操作分类单元(OTU)。为了克服这些问题,非参数方法,如曼-惠特尼 U 检验和 Wilcoxon 秩和检验,经常被用于识别与宿主疾病相关的 OTU。然而,这些方法仅使用观察到的相对丰度的秩,导致信息丢失,并与高假阴性率相关。在本研究中,我们提出了一种基于系统发育树的微生物组关联测试(TMAT)来分析微生物组 OTU 丰度与疾病表型之间的关联。系统发育树说明了不同 OTU 之间相似性的模式,而 TMAT 为利用这种信息进行关联分析提供了一种有效的方法。所提出的 TMAT 为每个节点提供了测试统计量,这些统计量被组合起来以识别与宿主疾病相关的突变。

结果

使用基于真实绝对丰度的广泛模拟,比较了 TMAT 的功效估计与现有方法。模拟研究表明,TMAT 保持了名义第一类错误率,并且在考虑的情况下,其统计功效的估计通常优于现有方法。此外,TMAT 可用于检测与宿主疾病相关的系统发育突变,为细菌病理学提供更深入的见解。

可用性和实现

结直肠癌和肌痛性脑脊髓炎/慢性疲劳综合征的 16S rRNA 扩增子测序宏基因组数据集可从欧洲核苷酸档案(ENA)数据库中获得,项目访问号分别为 PRJEB6070 和 PRJEB13092。TMAT 是在 R 包中实现的。详细信息可在 http://healthstat.snu.ac.kr/software/tmat 上获得。

补充信息

补充数据可在生物信息学在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验