Suppr超能文献

整合来自多种统计方法的微生物组数据值。

Combining -values from various statistical methods for microbiome data.

作者信息

Ham Hyeonjung, Park Taesung

机构信息

Interdisciplinary Program of Bioinformatics, Seoul National University, Seoul, South Korea.

Departement of Statistics, Seoul National University, Seoul, South Korea.

出版信息

Front Microbiol. 2022 Nov 10;13:990870. doi: 10.3389/fmicb.2022.990870. eCollection 2022.

Abstract

MOTIVATION

In the field of microbiome analysis, there exist various statistical methods that have been developed for identifying differentially expressed features, that account for the overdispersion and the high sparsity of microbiome data. However, due to the differences in statistical models or test formulations, it is quite often to have inconsistent significance results across statistical methods, that makes it difficult to determine the importance of microbiome taxa. Thus, it is practically important to have the integration of the result from all statistical methods to determine the importance of microbiome taxa. A standard meta-analysis is a powerful tool for integrative analysis and it provides a summary measure by combining -values from various statistical methods. While there are many meta-analyses available, it is not easy to choose the best meta-analysis that is the most suitable for microbiome data.

RESULTS

In this study, we investigated which meta-analysis method most adequately represents the importance of microbiome taxa. We considered Fisher's method, minimum value of method, Simes method, Stouffer's method, Kost method, and Cauchy combination test. Through simulation studies, we showed that Cauchy combination test provides the best combined value of in the sense that it performed the best among the examined methods while controlling the type 1 error rates. Furthermore, it produced high rank similarity with the true ranks. Through the real data application of colorectal cancer microbiome data, we demonstrated that the most highly ranked microbiome taxa by Cauchy combination test have been reported to be associated with colorectal cancer.

摘要

动机

在微生物组分析领域,已经开发出各种统计方法来识别差异表达特征,这些方法考虑了微生物组数据的过度分散和高稀疏性。然而,由于统计模型或检验公式的差异,不同统计方法的显著性结果常常不一致,这使得难以确定微生物分类群的重要性。因此,整合所有统计方法的结果以确定微生物分类群的重要性在实际应用中具有重要意义。标准的荟萃分析是一种强大的综合分析工具,它通过合并来自各种统计方法的p值来提供一个汇总度量。虽然有许多可用的荟萃分析方法,但选择最适合微生物组数据的最佳荟萃分析方法并不容易。

结果

在本研究中,我们调查了哪种荟萃分析方法最能充分体现微生物分类群的重要性。我们考虑了费舍尔方法、p值的最小值方法、西姆斯方法、斯托弗方法、科斯特方法和柯西组合检验。通过模拟研究,我们表明柯西组合检验在控制一类错误率的同时,在所研究的方法中表现最佳,从而提供了最佳的合并p值。此外,它与真实排名产生了高度的排名相似性。通过对结直肠癌微生物组数据的实际应用,我们证明柯西组合检验排名最高的微生物分类群已被报道与结直肠癌相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2998/9686280/dedbe496aa9a/fmicb-13-990870-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验