Suppr超能文献

骨髓基质细胞在转录水平上抑制 ESR1,但不能克服组成型 ESR1 突变活性。

Bone Marrow Stromal Cells Transcriptionally Repress ESR1 but Cannot Overcome Constitutive ESR1 Mutant Activity.

机构信息

Department of Oncology, McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin.

Carbone Comprehensive Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin.

出版信息

Endocrinology. 2019 Oct 1;160(10):2427-2440. doi: 10.1210/en.2019-00299.

Abstract

Estrogen receptor α (ER) is the target of endocrine therapies in ER-positive breast cancer (BC), but their therapeutic effectiveness diminishes with disease progression. Most metastatic BCs retain an ER-positive status, but ER expression levels are reduced. We asked how the bone tumor microenvironment (TME) regulates ER expression. We observed ESR1 mRNA and ER protein downregulation in BC cells treated with conditioned media (CM) from patient-derived, cancer-activated bone marrow stromal cells (BMSCs) and the BMSC cell line HS5. Decreases in ESR1 mRNA were attributed to decreases in nascent transcripts as well as decreased RNA polymerase II occupancy and H3K27Ac levels on the ESR1 promoter and/or distal enhancer (ENH1). Repression extended to neighboring genes of ESR1, including ARMT1 and SYNE1. Although ERK/MAPK signaling pathway can repress ER expression by other TME cell types, MAPK inhibition did not reverse decreases in ER expression by BMSC-CM. ESR1 mRNA and ER protein half-lives in MCF7 cells were unchanged by BMSC-CM treatment. Whereas ER phosphorylation was induced, ER activity was repressed by BMSC-CM as neither ER occupancy at known binding sites nor estrogen response element-luciferase activity was detected. BMSC-CM also repressed expression of ER target genes. In cells expressing the Y537S and D538G ESR1 mutations, BMSC-CM reduced ESR1, but expression of target genes PGR and TFF1 remained significantly elevated compared with that of control wild-type cells. These studies demonstrate that BMSCs can transcriptionally corepress ESR1 with neighboring genes and inhibit receptor activity, but the functional consequences of the BMSC TME can be limited by metastasis-associated ESR1 mutations.

摘要

雌激素受体 α(ER)是 ER 阳性乳腺癌(BC)内分泌治疗的靶点,但随着疾病的进展,其治疗效果会减弱。大多数转移性 BC 仍然保持 ER 阳性状态,但 ER 表达水平降低。我们想知道骨肿瘤微环境(TME)如何调节 ER 表达。我们观察到 BC 细胞在用患者来源的、癌症激活的骨髓基质细胞(BMSC)和 BMSC 细胞系 HS5 的条件培养基(CM)处理后,ESR1 mRNA 和 ER 蛋白下调。ESR1 mRNA 的减少归因于新生转录本的减少以及 RNA 聚合酶 II 在 ESR1 启动子和/或远端增强子(ENH1)上的占据和 H3K27Ac 水平的减少。这种抑制扩展到 ESR1 附近的基因,包括 ARMT1 和 SYNE1。虽然 ERK/MAPK 信号通路可以通过其他 TME 细胞类型抑制 ER 表达,但 MAPK 抑制并不能逆转 BMSC-CM 对 ER 表达的抑制作用。BMSC-CM 处理对 MCF7 细胞中 ER 表达的半衰期没有影响。虽然 ER 磷酸化被诱导,但 ER 活性被 BMSC-CM 抑制,因为在已知的结合位点或雌激素反应元件-荧光素酶活性均未检测到 ER 占据。BMSC-CM 还抑制 ER 靶基因的表达。在表达 Y537S 和 D538G ESR1 突变的细胞中,BMSC-CM 降低了 ESR1,但与对照野生型细胞相比,靶基因 PGR 和 TFF1 的表达仍然显著升高。这些研究表明,BMSCs 可以与邻近基因共同转录抑制 ESR1,并抑制受体活性,但 BMSC TME 的功能后果可能受到转移相关 ESR1 突变的限制。

相似文献

2
Mutation site and context dependent effects of ESR1 mutation in genome-edited breast cancer cell models.
Breast Cancer Res. 2017 May 23;19(1):60. doi: 10.1186/s13058-017-0851-4.
3
Upregulation of IRS1 Enhances IGF1 Response in Y537S and D538G ESR1 Mutant Breast Cancer Cells.
Endocrinology. 2018 Jan 1;159(1):285-296. doi: 10.1210/en.2017-00693.
5
Multimodal Assessment of Estrogen Receptor mRNA Profiles to Quantify Estrogen Pathway Activity in Breast Tumors.
Clin Breast Cancer. 2017 Apr;17(2):139-153. doi: 10.1016/j.clbc.2016.09.001. Epub 2016 Sep 13.
6
The prevalence of estrogen receptor-1 mutation in advanced breast cancer: The estrogen receptor one study (EROS1).
Cancer Treat Res Commun. 2019;19:100123. doi: 10.1016/j.ctarc.2019.100123. Epub 2019 Feb 21.
8
F-Fluoroestradiol PET Imaging of Activating Estrogen Receptor-α Mutations in Breast Cancer.
J Nucl Med. 2019 Sep;60(9):1247-1252. doi: 10.2967/jnumed.118.224667. Epub 2019 Mar 8.
10
Downregulation of estrogen receptor and modulation of growth of breast cancer cell lines mediated by paracrine stromal cell signals.
Breast Cancer Res Treat. 2017 Jan;161(2):229-243. doi: 10.1007/s10549-016-4052-0. Epub 2016 Nov 16.

引用本文的文献

1
Breaking Bad Proteins-Discovery Approaches and the Road to Clinic for Degraders.
Cells. 2024 Mar 26;13(7):578. doi: 10.3390/cells13070578.
2
Tumor Microenvironment Uses a Reversible Reprogramming of Mesenchymal Stromal Cells to Mediate Pro-tumorigenic Effects.
Front Cell Dev Biol. 2020 Nov 19;8:545126. doi: 10.3389/fcell.2020.545126. eCollection 2020.
3
Emerging data supporting stromal cell therapeutic potential in cancer: reprogramming stromal cells of the tumor microenvironment for anti-cancer effects.
Cancer Biol Med. 2020 Nov 15;17(4):828-841. doi: 10.20892/j.issn.2095-3941.2020.0133. Epub 2020 Dec 15.
4
Intrinsic and Extrinsic Factors Governing the Transcriptional Regulation of ESR1.
Horm Cancer. 2020 Aug;11(3-4):129-147. doi: 10.1007/s12672-020-00388-0. Epub 2020 Jun 26.

本文引用的文献

3
Mutation site and context dependent effects of ESR1 mutation in genome-edited breast cancer cell models.
Breast Cancer Res. 2017 May 23;19(1):60. doi: 10.1186/s13058-017-0851-4.
4
Intrinsic Subtypes and Gene Expression Profiles in Primary and Metastatic Breast Cancer.
Cancer Res. 2017 May 1;77(9):2213-2221. doi: 10.1158/0008-5472.CAN-16-2717. Epub 2017 Mar 1.
5
Downregulation of estrogen receptor and modulation of growth of breast cancer cell lines mediated by paracrine stromal cell signals.
Breast Cancer Res Treat. 2017 Jan;161(2):229-243. doi: 10.1007/s10549-016-4052-0. Epub 2016 Nov 16.
7
Fibroblast Subtypes Regulate Responsiveness of Luminal Breast Cancer to Estrogen.
Clin Cancer Res. 2017 Apr 1;23(7):1710-1721. doi: 10.1158/1078-0432.CCR-15-2851. Epub 2016 Oct 4.
8
10
Tools for Single-Cell Kinetic Analysis of Virus-Host Interactions.
PLoS One. 2016 Jan 11;11(1):e0145081. doi: 10.1371/journal.pone.0145081. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验