Suppr超能文献

预测强制性运动疗法后卒中后更瘫痪侧上肢日常使用改善情况。

Predicting Improved Daily Use of the More Affected Arm Poststroke Following Constraint-Induced Movement Therapy.

机构信息

Whiting School of Engineering, Johns Hopkins University, Baltimore, Maryland.

Department of Neurology, The Ohio State University, Columbus, Ohio.

出版信息

Phys Ther. 2019 Dec 16;99(12):1667-1678. doi: 10.1093/ptj/pzz121.

Abstract

BACKGROUND

Constraint-induced movement therapy (CI therapy) produces, on average, large and clinically meaningful improvements in the daily use of a more affected upper extremity in individuals with hemiparesis. However, individual responses vary widely.

OBJECTIVE

The study objective was to investigate the extent to which individual characteristics before treatment predict improved use of the more affected arm following CI therapy.

DESIGN

This study was a retrospective analysis of 47 people who had chronic (> 6 months) mild to moderate upper extremity hemiparesis and were consecutively enrolled in 2 CI therapy randomized controlled trials.

METHODS

An enhanced probabilistic neural network model predicted whether individuals showed a low, medium, or high response to CI therapy, as measured with the Motor Activity Log, on the basis of the following baseline assessments: Wolf Motor Function Test, Semmes-Weinstein Monofilament Test of touch threshold, Motor Activity Log, and Montreal Cognitive Assessment. Then, a neural dynamic classification algorithm was applied to improve prognostic accuracy using the most accurate combination obtained in the previous step.

RESULTS

Motor ability and tactile sense predicted improvement in arm use for daily activities following intensive upper extremity rehabilitation with an accuracy of nearly 100%. Complex patterns of interaction among these predictors were observed.

LIMITATIONS

The fact that this study was a retrospective analysis with a moderate sample size was a limitation.

CONCLUSIONS

Advanced machine learning/classification algorithms produce more accurate personalized predictions of rehabilitation outcomes than commonly used general linear models.

摘要

背景

强制性运动疗法(CI 疗法)可平均显著提高偏瘫患者患侧上肢的日常使用能力,且具有临床意义。然而,个体的反应差异很大。

目的

本研究旨在探讨治疗前的个体特征在多大程度上可以预测 CI 疗法后患侧上肢使用能力的改善。

设计

这是一项对 47 名慢性(>6 个月)轻度至中度上肢偏瘫患者的回顾性分析,他们连续参加了 2 项 CI 疗法的随机对照试验。

方法

基于 Wolf 运动功能测试、Semmes-Weinstein 单丝触觉阈值测试、运动活动日志和蒙特利尔认知评估,增强概率神经网络模型预测个体在 CI 疗法后,根据运动活动日志,对 CI 疗法的低、中、高反应的可能性。然后,使用在前一步中获得的最准确的组合,应用神经动态分类算法来提高预测准确性。

结果

运动能力和触觉预测了上肢康复后日常活动中手臂使用能力的改善,准确性接近 100%。观察到这些预测因子之间存在复杂的相互作用模式。

局限性

本研究为回顾性分析,样本量中等,这是一个局限性。

结论

与常用的线性模型相比,先进的机器学习/分类算法可对康复结果进行更准确的个性化预测。

相似文献

6
Computer-aided prediction of extent of motor recovery following constraint-induced movement therapy in chronic stroke.
Behav Brain Res. 2017 Jun 30;329:191-199. doi: 10.1016/j.bbr.2017.03.012. Epub 2017 Mar 18.
7
Randomized Trial of Peripheral Nerve Stimulation to Enhance Modified Constraint-Induced Therapy After Stroke.
Am J Phys Med Rehabil. 2016 Jun;95(6):397-406. doi: 10.1097/PHM.0000000000000476.
8
Effects of constraint-induced therapy versus bilateral arm training on motor performance, daily functions, and quality of life in stroke survivors.
Neurorehabil Neural Repair. 2009 Jun;23(5):441-8. doi: 10.1177/1545968308328719. Epub 2008 Dec 31.
9
Improved quality of life following constraint-induced movement therapy is associated with gains in arm use, but not motor improvement.
Top Stroke Rehabil. 2018 Oct;25(7):467-474. doi: 10.1080/10749357.2018.1481605. Epub 2018 Sep 22.

引用本文的文献

1
Somatosensory-Evoked Potentials and Clinical Assessments of Sensory Function Over Time in Patients With Subacute Stroke.
Neural Plast. 2025 Jan 8;2025:7939662. doi: 10.1155/np/7939662. eCollection 2025.
2
Self-Supervised Learning for Near-Wild Cognitive Workload Estimation.
J Med Syst. 2024 Nov 22;48(1):107. doi: 10.1007/s10916-024-02122-7.
3
AI Applications in Adult Stroke Recovery and Rehabilitation: A Scoping Review Using AI.
Sensors (Basel). 2024 Oct 12;24(20):6585. doi: 10.3390/s24206585.
7
Validity and Reliability of the Semmes-Weinstein Monofilament Test and the Thumb Localizing Test in Patients With Stroke.
Front Neurol. 2021 Jan 27;11:625917. doi: 10.3389/fneur.2020.625917. eCollection 2020.
9
Predictors of Arm Nonuse in Chronic Stroke: A Preliminary Investigation.
Neurorehabil Neural Repair. 2020 Jun;34(6):512-522. doi: 10.1177/1545968320913554. Epub 2020 Jun 1.

本文引用的文献

1
Improved quality of life following constraint-induced movement therapy is associated with gains in arm use, but not motor improvement.
Top Stroke Rehabil. 2018 Oct;25(7):467-474. doi: 10.1080/10749357.2018.1481605. Epub 2018 Sep 22.
2
Nonlinear Semi-Supervised Metric Learning Via Multiple Kernels and Local Topology.
Int J Neural Syst. 2018 Mar;28(2):1750040. doi: 10.1142/S012906571750040X. Epub 2017 Sep 11.
3
Classification of Diffusion Tensor Metrics for the Diagnosis of a Myelopathic Cord Using Machine Learning.
Int J Neural Syst. 2018 Mar;28(2):1750036. doi: 10.1142/S0129065717500368. Epub 2017 Jul 16.
4
A New Neural Dynamic Classification Algorithm.
IEEE Trans Neural Netw Learn Syst. 2017 Dec;28(12):3074-3083. doi: 10.1109/TNNLS.2017.2682102. Epub 2017 Jul 25.
5
Gross motor ability predicts response to upper extremity rehabilitation in chronic stroke.
Behav Brain Res. 2017 Aug 30;333:314-322. doi: 10.1016/j.bbr.2017.07.002. Epub 2017 Jul 6.
6
A Pareto-based Ensemble with Feature and Instance Selection for Learning from Multi-Class Imbalanced Datasets.
Int J Neural Syst. 2017 Sep;27(6):1750028. doi: 10.1142/S0129065717500289. Epub 2017 Apr 11.
9
Beta Hebbian Learning as a New Method for Exploratory Projection Pursuit.
Int J Neural Syst. 2017 Sep;27(6):1750024. doi: 10.1142/S0129065717500241. Epub 2017 Mar 16.
10
Computer-aided prediction of extent of motor recovery following constraint-induced movement therapy in chronic stroke.
Behav Brain Res. 2017 Jun 30;329:191-199. doi: 10.1016/j.bbr.2017.03.012. Epub 2017 Mar 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验