Suppr超能文献

多种风险因素下相对疾病负担的图形比较。

Graphical comparisons of relative disease burden across multiple risk factors.

机构信息

Health Research Board Clinical Research Facility, Department of Medicine, NUI Galway, Galway, Ireland.

Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, ON, Canada.

出版信息

BMC Med Res Methodol. 2019 Sep 11;19(1):186. doi: 10.1186/s12874-019-0827-4.

Abstract

BACKGROUND

Population attributable fractions (PAF) measure the proportion of disease prevalence that would be avoided in a hypothetical population, similar to the population of interest, but where a particular risk factor is eliminated. They are extensively used in epidemiology to quantify and compare disease burden due to various risk factors, and directly influence public policy regarding possible health interventions. In contrast to individual specific metrics such as relative risks and odds ratios, attributable fractions depend jointly on both risk factor prevalence and relative risk. The relative contributions of these two components is important, and usually needs to be presented in summary tables that are presented together with the attributable fraction calculation. However, representing PAF in an accessible graphical format, that captures both prevalence and relative risk, may assist interpretation.

METHODS

Taylor-series approximations to PAF in terms of risk factor prevalence and log-odds ratio are derived that facilitate simultaneous representation of PAF, risk factor prevalence and risk-factor/disease log-odds ratios on a single co-ordinate axis. Methods are developed for binary, multi-category and continuous exposure variables.

RESULTS

The methods are demonstrated using INTERSTROKE, a large international case control dataset focused on risk factors for stroke.

CONCLUSIONS

The described methods could be used as a complement to tables summarizing prevalence, odds ratios and PAF, and may convey the same information in a more intuitive and visually appealing manner. The suggested nomogram can also be used to visually estimate the effects of health interventions which only partially reduce risk factor prevalence. Finally, in the binary risk factor case, the approximations can also be used to quickly convert logistic regression coefficients for a risk factor into approximate PAFs.

摘要

背景

人群归因分数(PAF)衡量的是在一个假设的人群中,类似于目标人群,但是消除了特定风险因素的情况下,疾病流行率会避免的比例。它们在流行病学中被广泛用于量化和比较各种风险因素导致的疾病负担,并直接影响关于可能的健康干预措施的公共政策。与个体特定指标(如相对风险和比值比)不同,归因分数取决于风险因素的流行率和相对风险。这两个组成部分的相对贡献很重要,通常需要在与归因分数计算一起呈现的摘要表中呈现。然而,以一种易于理解的图形格式呈现 PAF,可以同时捕捉流行率和相对风险,可能有助于解释。

方法

推导出了 PAF 关于风险因素流行率和对数比值比的泰勒级数近似值,这些近似值可以在单个坐标轴上同时表示 PAF、风险因素流行率以及风险因素/疾病的对数比值比。方法适用于二项、多类别和连续暴露变量。

结果

使用 INTERSTROKE(一项针对中风风险因素的大型国际病例对照数据集)演示了这些方法。

结论

所描述的方法可以作为总结流行率、比值比和 PAF 的表格的补充,并且可能以更直观和吸引人的方式传达相同的信息。建议的列线图也可用于直观估计仅部分降低风险因素流行率的健康干预措施的效果。最后,在二项风险因素的情况下,近似值也可用于将风险因素的逻辑回归系数快速转换为近似 PAF。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9562/6737608/0a660121f208/12874_2019_827_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验