Suppr超能文献

从概念到晶体的预测:通过社交自组装的多组分有机笼锅。

From Concept to Crystals via Prediction: Multi-Component Organic Cage Pots by Social Self-Sorting.

机构信息

Department of Chemistry and Materials Innovation Factory, University of Liverpool, 51 Oxford Street, Liverpool, L7 3NY, UK.

Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London, W12 0BZ, UK.

出版信息

Angew Chem Int Ed Engl. 2019 Nov 4;58(45):16275-16281. doi: 10.1002/anie.201909237. Epub 2019 Sep 24.

Abstract

We describe the a priori computational prediction and realization of multi-component cage pots, starting with molecular predictions based on candidate precursors through to crystal structure prediction and synthesis using robotic screening. The molecules were formed by the social self-sorting of a tri-topic aldehyde with both a tri-topic amine and di-topic amine, without using orthogonal reactivity or precursors of the same topicity. Crystal structure prediction suggested a rich polymorphic landscape, where there was an overall preference for chiral recognition to form heterochiral rather than homochiral packings, with heterochiral pairs being more likely to pack window-to-window to form two-component capsules. These crystal packing preferences were then observed in experimental crystal structures.

摘要

我们描述了多组分笼状配合物的先验计算预测和实现,从基于候选前体的分子预测开始,通过机器人筛选进行晶体结构预测和合成。这些分子是由具有三齿胺和二齿胺的三齿醛的社会自组装形成的,没有使用正交反应性或相同拓扑的前体。晶体结构预测表明存在丰富的多晶型景观,总体上优先进行手性识别以形成杂同手性而不是同手性堆积,杂同手性对更有可能以窗口对窗口的方式堆积形成二组分胶囊。这些晶体堆积偏好随后在实验晶体结构中得到了观察。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验