Wang Yan, Wang Sibo, Lou Xiong Wen David
School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459, Singapore.
Angew Chem Int Ed Engl. 2019 Nov 25;58(48):17236-17240. doi: 10.1002/anie.201909707. Epub 2019 Oct 15.
Materials for high-efficiency photocatalytic CO reduction are desirable for solar-to-carbon fuel conversion. Herein, highly dispersed nickel cobalt oxyphosphide nanoparticles (NiCoOP NPs) were confined in multichannel hollow carbon fibers (MHCFs) to construct the NiCoOP-NPs@MHCFs catalysts for efficient CO photoreduction. The synthesis involves electrospinning, phosphidation, and carbonization steps and permits facile tuning of chemical composition. In the catalyst, the mixed metal oxyphosphide NPs with ultrasmall size and high dispersion offer abundant catalytically active sites for redox reactions. At the same time, the multichannel hollow carbon matrix with high conductivity and open ends will effectively promote mass/charge transfer, improve CO adsorption, and prevent the metal oxyphosphide NPs from aggregation. The optimized hetero-metal oxyphosphide catalyst exhibits considerable activity for photosensitized CO reduction, affording a high CO evolution rate of 16.6 μmol h (per 0.1 mg of catalyst).
用于高效光催化CO还原的材料对于太阳能到碳燃料的转化至关重要。在此,高度分散的镍钴氧磷化物纳米颗粒(NiCoOP NPs)被限制在多通道中空碳纤维(MHCFs)中,以构建用于高效CO光还原的NiCoOP-NPs@MHCFs催化剂。合成过程包括静电纺丝、磷化和碳化步骤,并允许对化学成分进行轻松调节。在催化剂中,具有超小尺寸和高分散性的混合金属氧磷化物纳米颗粒为氧化还原反应提供了丰富的催化活性位点。同时,具有高导电性和开放端的多通道中空碳基质将有效地促进质量/电荷转移,改善CO吸附,并防止金属氧磷化物纳米颗粒聚集。优化后的杂金属氧磷化物催化剂对光敏CO还原表现出相当高的活性,每0.1mg催化剂的CO析出速率高达16.6μmol h。