Suppr超能文献

对AMPA受体C端结构域磷酸化诱导的构象刚性的机制理解

Mechanistic Understanding of the Phosphorylation-Induced Conformational Rigidity at the AMPA Receptor C-terminal Domain.

作者信息

Chatterjee Sudeshna, Dutta Chayan, Carrejo Nicole C, Landes Christy F

机构信息

Department of Chemistry and Department of Electrical and Computer Engineering, Rice University, Houston, Texas 77005, United States.

出版信息

ACS Omega. 2019 Aug 20;4(10):14211-14218. doi: 10.1021/acsomega.9b01384. eCollection 2019 Sep 3.

Abstract

Phosphorylation at the intracellular C-terminal domain (CTD) of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors induces conformational rigidity. Such intracellular alterations to the AMPA receptor influence its functional responses, which are involved in multiple synaptic processes and neuronal signaling. The structure of the CTD still remains unresolved, which poses challenges toward providing a mechanism for the process of phosphorylation and deciphering the role of each phosphorylation step in causing the resultant conformational behavior. Herein, we utilize smFRET spectroscopy to understand the mechanism of phosphorylation, with the help of strategic point mutations that mimic phosphorylation. Our results reveal that first, phosphorylation at three target sites (S818, S831, and T840) is necessary for the change in the secondary structure of the existing disordered native sequence. Also, the results suggest that the formation of the tertiary structure through electrostatic interaction involving one specific phosphorylation site (S831) stabilizes the structure and renders conformational rigidity.

摘要

α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA)受体细胞内C末端结构域(CTD)的磷酸化会诱导构象刚性。AMPA受体的这种细胞内改变会影响其功能反应,这些反应涉及多个突触过程和神经元信号传导。CTD的结构仍未解析,这为提供磷酸化过程的机制以及解读每个磷酸化步骤在导致最终构象行为中的作用带来了挑战。在此,我们利用单分子荧光共振能量转移(smFRET)光谱,借助模拟磷酸化的策略性点突变来理解磷酸化机制。我们的结果表明,首先,三个靶位点(S818、S831和T840)的磷酸化对于现有无序天然序列二级结构的改变是必要的。此外,结果表明通过涉及一个特定磷酸化位点(S831)的静电相互作用形成三级结构可稳定该结构并产生构象刚性。

相似文献

1
Mechanistic Understanding of the Phosphorylation-Induced Conformational Rigidity at the AMPA Receptor C-terminal Domain.
ACS Omega. 2019 Aug 20;4(10):14211-14218. doi: 10.1021/acsomega.9b01384. eCollection 2019 Sep 3.
2
Phosphorylation Induces Conformational Rigidity at the C-Terminal Domain of AMPA Receptors.
J Phys Chem B. 2019 Jan 10;123(1):130-137. doi: 10.1021/acs.jpcb.8b10749. Epub 2018 Dec 27.
3
Dynamic increases in AMPA receptor phosphorylation in the rat hippocampus in response to amphetamine.
J Neurochem. 2015 Jun;133(6):795-805. doi: 10.1111/jnc.13067. Epub 2015 Mar 2.
4
Phosphorylation of AMPA receptors: mechanisms and synaptic plasticity.
Mol Neurobiol. 2005 Dec;32(3):237-49. doi: 10.1385/MN:32:3:237.
6
AMPA receptor translocation and phosphorylation are induced by transcranial direct current stimulation in rats.
Neurobiol Learn Mem. 2018 Apr;150:36-41. doi: 10.1016/j.nlm.2017.11.002. Epub 2017 Nov 11.
7
Identification and characterization of a novel phosphorylation site on the GluR1 subunit of AMPA receptors.
Mol Cell Neurosci. 2007 Sep;36(1):86-94. doi: 10.1016/j.mcn.2007.06.003. Epub 2007 Jun 27.
10
Regulation of AMPA receptor activity, synaptic targeting and recycling: role in synaptic plasticity.
Neurochem Res. 2003 Oct;28(10):1459-73. doi: 10.1023/a:1025610122776.

本文引用的文献

1
Phosphorylation Induces Conformational Rigidity at the C-Terminal Domain of AMPA Receptors.
J Phys Chem B. 2019 Jan 10;123(1):130-137. doi: 10.1021/acs.jpcb.8b10749. Epub 2018 Dec 27.
2
Precision and accuracy of single-molecule FRET measurements-a multi-laboratory benchmark study.
Nat Methods. 2018 Sep;15(9):669-676. doi: 10.1038/s41592-018-0085-0. Epub 2018 Aug 31.
3
Small Molecules Targeting the Inactive Form of the Mnk1/2 Kinases.
ACS Omega. 2017 Nov 30;2(11):7881-7891. doi: 10.1021/acsomega.7b01403. Epub 2017 Nov 14.
4
The structure-energy landscape of NMDA receptor gating.
Nat Chem Biol. 2017 Dec;13(12):1232-1238. doi: 10.1038/nchembio.2487. Epub 2017 Oct 9.
6
Conformational Selection and Submillisecond Dynamics of the Ligand-binding Domain of the N-Methyl-d-aspartate Receptor.
J Biol Chem. 2016 Jul 29;291(31):16175-85. doi: 10.1074/jbc.M116.721274. Epub 2016 May 21.
7
AMPA Receptors as Therapeutic Targets for Neurological Disorders.
Adv Protein Chem Struct Biol. 2016;103:203-61. doi: 10.1016/bs.apcsb.2015.10.004. Epub 2015 Nov 19.
8
Conformational transitions in the glycine-bound GluN1 NMDA receptor LBD via single-molecule FRET.
Biophys J. 2015 Jul 7;109(1):66-75. doi: 10.1016/j.bpj.2015.05.025.
9
A Critical Role for the GluA1 Accessory Protein, SAP97, in Cocaine Seeking.
Neuropsychopharmacology. 2016 Feb;41(3):736-50. doi: 10.1038/npp.2015.199. Epub 2015 Jul 7.
10
Structural dynamics of the glycine-binding domain of the N-methyl-D-aspartate receptor.
J Biol Chem. 2015 Jan 9;290(2):797-804. doi: 10.1074/jbc.M114.605436. Epub 2014 Nov 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验