Suppr超能文献

通过单分子荧光共振能量转移研究甘氨酸结合型 GluN1 NMDA 受体配体结合域的构象转变

Conformational transitions in the glycine-bound GluN1 NMDA receptor LBD via single-molecule FRET.

作者信息

Cooper David R, Dolino Drew M, Jaurich Henriette, Shuang Bo, Ramaswamy Swarna, Nurik Caitlin E, Chen Jixin, Jayaraman Vasanthi, Landes Christy F

机构信息

Department of Chemistry, Rice University, Houston, Texas.

Center for Membrane Biology, Department of Biochemistry and Molecular Biology, Graduate School of Biomedical Sciences, University of Texas Health Science Center, Houston, Texas.

出版信息

Biophys J. 2015 Jul 7;109(1):66-75. doi: 10.1016/j.bpj.2015.05.025.

Abstract

The N-methyl-D-aspartate receptor (NMDAR) is a member of the glutamate receptor family of proteins and is responsible for excitatory transmission. Activation of the receptor is thought to be controlled by conformational changes in the ligand binding domain (LBD); however, glutamate receptor LBDs can occupy multiple conformations even in the activated form. This work probes equilibrium transitions among NMDAR LBD conformations by monitoring the distance across the glycine-bound LBD cleft using single-molecule Förster resonance energy transfer (smFRET). Recent improvements in photoprotection solutions allowed us to monitor transitions among the multiple conformations. Also, we applied a recently developed model-free algorithm called "step transition and state identification" to identify the number of states, their smFRET efficiencies, and their interstate kinetics. Reversible interstate conversions, corresponding to transitions among a wide range of cleft widths, were identified in the glycine-bound LBD, on much longer timescales compared to channel opening. These transitions were confirmed to be equilibrium in nature by shifting the distribution reversibly via denaturant. We found that the NMDAR LBD proceeds primarily from one adjacent smFRET state to the next under equilibrium conditions, consistent with a cleft-opening/closing mechanism. Overall, by analyzing the state-to-state transition dynamics and distributions, we achieve insight into specifics of long-lived LBD equilibrium structural dynamics, as well as obtain a more general description of equilibrium folding/unfolding in a conformationally dynamic protein. The relationship between such long-lived LBD dynamics and channel function in the full receptor remains an open and interesting question.

摘要

N-甲基-D-天冬氨酸受体(NMDAR)是谷氨酸受体蛋白家族的成员,负责兴奋性传递。该受体的激活被认为受配体结合结构域(LBD)构象变化的控制;然而,谷氨酸受体LBD即使在激活形式下也可占据多种构象。这项工作通过使用单分子Förster共振能量转移(smFRET)监测甘氨酸结合的LBD裂隙间的距离,来探究NMDAR LBD构象之间的平衡转变。光保护溶液的最新改进使我们能够监测多种构象之间的转变。此外,我们应用了一种最近开发的名为“步长转变和状态识别”的无模型算法,来识别状态数量、它们的smFRET效率以及它们的态间动力学。在甘氨酸结合的LBD中,识别出了对应于广泛裂隙宽度转变的可逆态间转换,与通道开放相比,其时间尺度要长得多。通过变性剂可逆地改变分布,证实了这些转变本质上是平衡的。我们发现,在平衡条件下,NMDAR LBD主要从一个相邻的smFRET状态转变为下一个状态,这与裂隙打开/关闭机制一致。总体而言,通过分析状态到状态的转变动力学和分布,我们深入了解了长寿命LBD平衡结构动力学的细节,同时也获得了对构象动态蛋白质中平衡折叠/去折叠的更一般描述。这种长寿命LBD动力学与完整受体中通道功能之间的关系仍然是一个开放且有趣的问题。

相似文献

1
Conformational transitions in the glycine-bound GluN1 NMDA receptor LBD via single-molecule FRET.
Biophys J. 2015 Jul 7;109(1):66-75. doi: 10.1016/j.bpj.2015.05.025.
2
Conformational Selection and Submillisecond Dynamics of the Ligand-binding Domain of the N-Methyl-d-aspartate Receptor.
J Biol Chem. 2016 Jul 29;291(31):16175-85. doi: 10.1074/jbc.M116.721274. Epub 2016 May 21.
3
Structural dynamics of the glycine-binding domain of the N-methyl-D-aspartate receptor.
J Biol Chem. 2015 Jan 9;290(2):797-804. doi: 10.1074/jbc.M114.605436. Epub 2014 Nov 17.
5
Molecular dynamics study-based mechanism of nefiracetam-induced NMDA receptor potentiation.
Comput Biol Chem. 2015 Apr;55:14-22. doi: 10.1016/j.compbiolchem.2015.01.004. Epub 2015 Jan 23.
7
Glutamate and Glycine Binding to the NMDA Receptor.
Structure. 2018 Jul 3;26(7):1035-1043.e2. doi: 10.1016/j.str.2018.05.004. Epub 2018 Jun 7.
8
Structural mechanism of N-methyl-D-aspartate receptor type 1 partial agonism.
PLoS One. 2012;7(10):e47604. doi: 10.1371/journal.pone.0047604. Epub 2012 Oct 15.
9
Molecular lock regulates binding of glycine to a primitive NMDA receptor.
Proc Natl Acad Sci U S A. 2016 Nov 1;113(44):E6786-E6795. doi: 10.1073/pnas.1607010113. Epub 2016 Oct 17.
10
Mechanism and properties of positive allosteric modulation of N-methyl-d-aspartate receptors by 6-alkyl 2-naphthoic acid derivatives.
Neuropharmacology. 2017 Oct;125:64-79. doi: 10.1016/j.neuropharm.2017.07.007. Epub 2017 Jul 11.

引用本文的文献

1
Modeling and Simulation of the NMDA Receptor at Coarse-Grained and Atomistic Levels.
Methods Mol Biol. 2024;2799:269-280. doi: 10.1007/978-1-0716-3830-9_15.
2
Single-Molecule FRET Analyses of NMDA Receptors.
Methods Mol Biol. 2024;2799:225-242. doi: 10.1007/978-1-0716-3830-9_12.
3
Structure and function of GluN1-3A NMDA receptor excitatory glycine receptor channel.
Sci Adv. 2024 Apr 12;10(15):eadl5952. doi: 10.1126/sciadv.adl5952. Epub 2024 Apr 10.
4
Partial agonism in heteromeric GLUK2/GLUK5 kainate receptor.
Proteins. 2025 Jan;93(1):134-144. doi: 10.1002/prot.26565. Epub 2023 Aug 1.
5
Site-specific incorporation of biophysical probes into NF-ĸB with non-canonical amino acids.
Methods. 2023 May;213:18-25. doi: 10.1016/j.ymeth.2023.03.004. Epub 2023 Mar 20.
6
A Variant Associated With Myoclonus and Developmental Delay: From Molecular Mechanism to Rescue Pharmacology.
Front Genet. 2021 Aug 3;12:694312. doi: 10.3389/fgene.2021.694312. eCollection 2021.
7
Single molecule FRET methodology for investigating glutamate receptors.
Methods Enzymol. 2021;652:193-212. doi: 10.1016/bs.mie.2021.02.005. Epub 2021 Mar 9.
8
Structural Basis of Functional Transitions in Mammalian NMDA Receptors.
Cell. 2020 Jul 23;182(2):357-371.e13. doi: 10.1016/j.cell.2020.05.052. Epub 2020 Jun 30.
9
Conformational spread and dynamics in allostery of NMDA receptors.
Proc Natl Acad Sci U S A. 2020 Feb 18;117(7):3839-3847. doi: 10.1073/pnas.1910950117. Epub 2020 Feb 3.
10
Mechanistic Understanding of the Phosphorylation-Induced Conformational Rigidity at the AMPA Receptor C-terminal Domain.
ACS Omega. 2019 Aug 20;4(10):14211-14218. doi: 10.1021/acsomega.9b01384. eCollection 2019 Sep 3.

本文引用的文献

1
Cy3 photoprotection mediated by Ni2+ for extended single-molecule imaging: old tricks for new techniques.
J Am Chem Soc. 2015 Jan 28;137(3):1116-22. doi: 10.1021/ja509923e. Epub 2015 Jan 16.
2
Structural dynamics of the glycine-binding domain of the N-methyl-D-aspartate receptor.
J Biol Chem. 2015 Jan 9;290(2):797-804. doi: 10.1074/jbc.M114.605436. Epub 2014 Nov 17.
3
Fast Step Transition and State Identification (STaSI) for Discrete Single-Molecule Data Analysis.
J Phys Chem Lett. 2014 Sep 18;5(18):3157-3161. doi: 10.1021/jz501435p. Epub 2014 Aug 28.
4
NMDA receptor structures reveal subunit arrangement and pore architecture.
Nature. 2014 Jul 10;511(7508):191-7. doi: 10.1038/nature13548. Epub 2014 Jun 22.
5
Crystal structure of a heterotetrameric NMDA receptor ion channel.
Science. 2014 May 30;344(6187):992-7. doi: 10.1126/science.1251915.
6
Fast protein folding kinetics.
Q Rev Biophys. 2014 May;47(2):95-142. doi: 10.1017/S003358351400002X. Epub 2014 Mar 18.
7
Single-molecule FRET of protein structure and dynamics - a primer.
J Nanobiotechnology. 2013;11 Suppl 1(Suppl 1):S2. doi: 10.1186/1477-3155-11-S1-S2. Epub 2013 Dec 10.
8
Role of cross-cleft contacts in NMDA receptor gating.
PLoS One. 2013 Nov 21;8(11):e80953. doi: 10.1371/journal.pone.0080953. eCollection 2013.
9
Proteins in action: femtosecond to millisecond structural dynamics of a photoactive flavoprotein.
J Am Chem Soc. 2013 Oct 30;135(43):16168-74. doi: 10.1021/ja407265p. Epub 2013 Oct 22.
10
Conformational analysis of NMDA receptor GluN1, GluN2, and GluN3 ligand-binding domains reveals subtype-specific characteristics.
Structure. 2013 Oct 8;21(10):1788-99. doi: 10.1016/j.str.2013.07.011. Epub 2013 Aug 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验