Suppr超能文献

新型富氢YS-H化合物的计算设计

Computational Design of Novel Hydrogen-Rich YS-H Compounds.

作者信息

Chen Ju, Cui Wenwen, Shi Jingming, Xu Meiling, Hao Jian, Durajski Artur P, Li Yinwei

机构信息

Laboratory of Quantum Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.

Institute of Physics, Czȩtochowa University of Technology, Ave. Armii Krajowej 19, 42-200 Czȩstochowa, Poland.

出版信息

ACS Omega. 2019 Aug 21;4(10):14317-14323. doi: 10.1021/acsomega.9b02094. eCollection 2019 Sep 3.

Abstract

The recent successful findings of HS and LaH compressed above 150 GPa with a record high (above 200 K) have shifted the focus on hydrogen-rich materials for high superconductivity at high pressure. Moreover, some studies also report that transition-metal ternary hydrides could be synthesized at a relatively low pressure (∼10 GPa). Therefore, it is highly desirable to investigate the crystal structures of ternary hydrides compounds at high pressure since they have been long considered as promising superconductors and hydrogen-storage materials with a high , and can be possibly synthesized at low pressure as well. In this work, combining state-of-the-art crystal structure prediction and first-principles calculations, we have performed extensive simulations on the crystal structures of YSH ( = 1-10) compounds from ambient pressure to 200 GPa. We uncovered three thermodynamically stable compounds with stoichiometries of YSH, YSH, and YSH, which became energetically stable at ambient pressure, 143, and 87 GPa, respectively. Remarkably, it is found that YSH contains monoatomic H atoms, while YSH and YSH contain a mixture of atomlike and molecular hydrogen units. Upon compression, YSH, YSH, and YSH undergo a transition from a semiconductor to a metallic phase at pressures of 168, 143, and 232 GPa, respectively. Unfortunately, electron-phonon coupling calculations reveal that these compounds possess a weak superconductivity with a relatively low (below 1 K), which mainly stem from the low value of density of states occupation at the Fermi level ( ). These results highlight that the crystal structures play a critical role in determining the high-temperature superconductivity.

摘要

最近成功发现的在超过150吉帕斯卡压力下具有创纪录高转变温度(高于200开尔文)的硫化氢(HS)和氢化镧(LaH),已将研究重点转向用于高压下高超导性的富氢材料。此外,一些研究还报告称,过渡金属三元氢化物可以在相对较低的压力(约10吉帕斯卡)下合成。因此,非常有必要研究三元氢化物化合物在高压下的晶体结构,因为它们长期以来一直被认为是有前景的超导体和具有高转变温度的储氢材料,并且也可能在低压下合成。在这项工作中,结合最先进的晶体结构预测和第一性原理计算,我们对YSHₓ(x = 1 - 10)化合物从常压到200吉帕斯卡的晶体结构进行了广泛的模拟。我们发现了三种化学计量比为YSH、YSH₃和YSH₅的热力学稳定化合物,它们分别在常压、143吉帕斯卡和87吉帕斯卡时在能量上变得稳定。值得注意的是,发现YSH含有单原子H原子,而YSH₃和YSH₅含有类原子氢和分子氢单元的混合物。在压缩过程中,YSH、YSH₃和YSH₅分别在168吉帕斯卡、143吉帕斯卡和232吉帕斯卡的压力下从半导体相转变为金属相。不幸的是,电子 - 声子耦合计算表明,这些化合物具有较弱的超导性,其转变温度相对较低(低于1开尔文),这主要源于费米能级处态密度占有率的值较低。这些结果突出表明,晶体结构在决定高温超导性方面起着关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d773/6733225/4eb2449bb785/ao9b02094_0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验