Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA, USA.
Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA, USA.
Epigenetics. 2020 Mar;15(3):272-282. doi: 10.1080/15592294.2019.1666649. Epub 2019 Sep 17.
DNA methylation and histone modifications are two major epigenetic marks in mammalian cells. Previous studies have revealed that these two mechanisms interact although a quantitative model of these is still lacking in mammalian cells. Here we sought to develop such a model by systematically evaluating the quantitative relationship between DNA methylation and the core histone modification marks in human epigenomes. This model reflects the interactions of ADD and PWWP domains of DNA methyltransferase (DNMTs) with histone 3 lysine tails. Our analysis integrated 35 whole genome bisulphite sequencing data sets (about 800 million CpG sites), 35 chromatin states and 175 ChIP-Seq histone modification profiles across 35 human cell types. The logistic regression model we built shows that more than half of the variance across DNA methylomes can be explained by the five-core histone modification across varied types of human cell and tissue samples. Importantly, we find that H3K4me3 has a dramatic effect in DNA methylation patterning, highlighting the essential interaction between ADD domain of DNMTs and histone 3 lysine 4 in human. Moreover, our model suggests DNA methylation is generally inhibited by the presence of H3K4me3, H3K4me1 and H3K27me3, while increased levels are found in regions that are marked by H3K9me3 and H3K36me3. In summary, our results provide a comprehensive evaluation of the crosstalk between DNA methylation and histone modification in a variety of human cell types, and shows that DNA methylation patterns can be largely explained by interactions between histone 3 lysine tails and specific domains of DNA methyltransferases.
DNA 甲基化和组蛋白修饰是哺乳动物细胞中的两种主要表观遗传标记。先前的研究表明,这两种机制相互作用,尽管哺乳动物细胞中仍然缺乏这种机制的定量模型。在这里,我们试图通过系统地评估人类表观基因组中 DNA 甲基化与核心组蛋白修饰标记之间的定量关系来建立这样一个模型。该模型反映了 DNA 甲基转移酶(DNMTs)的 ADD 和 PWWP 结构域与组蛋白 3 赖氨酸尾部的相互作用。我们的分析整合了 35 个全基因组亚硫酸氢盐测序数据集(约 8 亿个 CpG 位点)、35 个染色质状态和 175 个 ChIP-Seq 组蛋白修饰图谱,涵盖了 35 个人类细胞类型。我们构建的逻辑回归模型表明,超过一半的 DNA 甲基组间差异可以用五种核心组蛋白修饰来解释,这五种核心组蛋白修饰在不同类型的人类细胞和组织样本中都存在。重要的是,我们发现 H3K4me3 对 DNA 甲基化模式有显著影响,突出了 DNMTs 的 ADD 结构域和组蛋白 3 赖氨酸 4 之间的重要相互作用。此外,我们的模型表明,DNA 甲基化通常受到 H3K4me3、H3K4me1 和 H3K27me3 的抑制,而在 H3K9me3 和 H3K36me3 标记的区域则发现了增加的水平。总之,我们的研究结果全面评估了在各种人类细胞类型中 DNA 甲基化与组蛋白修饰之间的相互作用,并表明 DNA 甲基化模式可以在很大程度上通过组蛋白 3 赖氨酸尾部和特定的 DNA 甲基转移酶结构域之间的相互作用来解释。