Mauser Rebekka, Kungulovski Goran, Keup Corinna, Reinhardt Richard, Jeltsch Albert
Department of Biochemistry, Institute of Biochemistry and Technical Biochemistry, Stuttgart University, Allmandring 31, 70569, Stuttgart, Germany.
Max-Planck-Genomzentrum Köln, Carl-von-Linné-Weg 10, 50829, Cologne, Germany.
Epigenetics Chromatin. 2017 Sep 25;10(1):45. doi: 10.1186/s13072-017-0153-1.
Histone post-translational modifications (PTMs) play central roles in chromatin-templated processes. Combinations of two or more histone PTMs form unique interfaces for readout and recruitment of chromatin interacting complexes, but the genome-wide mapping of coexisting histone PTMs remains an experimentally difficult task.
We introduce here a novel type of affinity reagents consisting of two fused recombinant histone modification interacting domains (HiMIDs) for direct detection of doubly modified chromatin. To develop the method, we fused the MPP8 chromodomain and DNMT3A PWWP domain which have a binding specificity for H3K9me3 and H3K36me2/3, respectively. We validate the novel reagent biochemically and in ChIP applications and show its specific interaction with H3K9me3-H3K36me2/3 doubly modified chromatin. Modification specificity was confirmed using mutant double-HiMIDs with inactivated methyllysine binding pockets. Using this novel tool, we mapped coexisting H3K9me3-H3K36me2/3 marks in human cells by chromatin interacting domain precipitation (CIDOP). CIDOP-seq data were validated by qPCR, sequential CIDOP/ChIP and by comparison with CIDOP- and ChIP-seq data obtained with single modification readers and antibodies. The genome-wide distribution of H3K9me3-H3K36me2/3 indicates that it represents a novel bivalent chromatin state, which is enriched in weakly transcribed chromatin segments and at ZNF274 and SetDB1 binding sites.
The application of double-HiMIDs allows the single-step study of co-occurrence and distribution of combinatorial chromatin marks. Our discovery of a novel H3K9me3-H3K36me2/3 bivalent chromatin state illustrates the power of this approach, and it will stimulate numerous follow-up studies on its biological functions.
组蛋白翻译后修饰(PTMs)在以染色质为模板的过程中发挥核心作用。两种或更多种组蛋白PTM的组合形成了用于读取和募集染色质相互作用复合物的独特界面,但共存组蛋白PTM的全基因组图谱绘制仍然是一项实验性难题。
我们在此介绍一种新型亲和试剂,其由两个融合的重组组蛋白修饰相互作用结构域(HiMIDs)组成,用于直接检测双重修饰的染色质。为开发该方法,我们融合了分别对H3K9me3和H3K36me2/3具有结合特异性的MPP8染色质结构域和DNMT3A PWWP结构域。我们在生化和染色质免疫沉淀(ChIP)应用中验证了这种新型试剂,并展示了其与H3K9me3-H3K36me2/3双重修饰染色质的特异性相互作用。使用具有失活甲基赖氨酸结合口袋的突变型双HiMIDs证实了修饰特异性。利用这种新型工具,我们通过染色质相互作用结构域沉淀(CIDOP)在人类细胞中绘制了共存的H3K9me3-H3K36me2/3标记。CIDOP-seq数据通过定量聚合酶链反应(qPCR)、连续CIDOP/ChIP以及与使用单修饰读取器和抗体获得的CIDOP-和ChIP-seq数据进行比较来验证。H3K9me3-H3K36me2/3的全基因组分布表明它代表一种新型的双价染色质状态,这种状态在弱转录的染色质片段以及ZNF274和SetDB1结合位点富集。
双HiMIDs的应用使得能够对组合染色质标记的共现和分布进行单步研究。我们对新型H3K9me3-H3K36me2/3双价染色质状态的发现说明了这种方法的强大之处,并且它将激发对其生物学功能的大量后续研究。