Department of Molecular Medicine, Scripps Research, La Jolla, CA 92037, USA.
Department of Pharmaceutical Chemistry, University of California at San Francisco, San Francisco, CA 94158, USA.
Hum Mol Genet. 2020 Jan 1;29(1):1-19. doi: 10.1093/hmg/ddz215.
Genetic diversity provides a rich repository for understanding the role of proteostasis in the management of the protein fold in human biology. Failure in proteostasis can trigger multiple disease states, affecting both human health and lifespan. Niemann-Pick C1 (NPC1) disease is a rare genetic disorder triggered by mutations in NPC1, a multi-spanning transmembrane protein that is trafficked through the exocytic pathway to late endosomes (LE) and lysosomes (Ly) (LE/Ly) to globally manage cholesterol homeostasis. Defects triggered by >300 NPC1 variants found in the human population inhibit export of NPC1 protein from the endoplasmic reticulum (ER) and/or function in downstream LE/Ly, leading to cholesterol accumulation and onset of neurodegeneration in childhood. We now show that the allosteric inhibitor JG98, that targets the cytosolic Hsp70 chaperone/co-chaperone complex, can significantly improve the trafficking and post-ER protein level of diverse NPC1 variants. Using a new approach to model genetic diversity in human disease, referred to as variation spatial profiling, we show quantitatively how JG98 alters the Hsp70 chaperone/co-chaperone system to adjust the spatial covariance (SCV) tolerance and set-points on an amino acid residue-by-residue basis in NPC1 to differentially regulate variant trafficking, stability, and cholesterol homeostasis, results consistent with the role of BCL2-associated athanogene family co-chaperones in managing the folding status of NPC1 variants. We propose that targeting the cytosolic Hsp70 system by allosteric regulation of its chaperone/co-chaperone based client relationships can be used to adjust the SCV tolerance of proteostasis buffering capacity to provide an approach to mitigate systemic and neurological disease in the NPC1 population.
遗传多样性为理解蛋白稳态在人类生物学中对蛋白折叠管理的作用提供了丰富的资源。蛋白稳态的失败会引发多种疾病状态,影响人类健康和寿命。尼曼-匹克 C1(NPC1)病是一种罕见的遗传疾病,由 NPC1 基因突变引发,NPC1 是一种多跨膜蛋白,通过胞吐途径运输到晚期内体(LE)和溶酶体(Ly)(LE/Ly),以全局管理胆固醇稳态。在人类群体中发现的超过 300 种 NPC1 变体引发的缺陷会抑制 NPC1 蛋白从内质网(ER)的输出,或者在下游 LE/Ly 中发挥作用,导致胆固醇积累和儿童期神经退行性变的发生。我们现在表明,靶向胞质 Hsp70 伴侣/共伴侣复合物的别构抑制剂 JG98 可以显著改善多种 NPC1 变体的运输和 ER 后蛋白水平。我们使用一种新的方法来模拟人类疾病中的遗传多样性,称为变异空间分析,定量显示了 JG98 如何改变 Hsp70 伴侣/共伴侣系统,以调整 NPC1 中基于残基的氨基酸残基的空间协方差(SCV)容差和设定点,从而差异调节变体的运输、稳定性和胆固醇稳态,结果与 BCL2 相关的 Athanogene 家族共伴侣在管理 NPC1 变体折叠状态的作用一致。我们提出,通过对其伴侣/共伴侣的变构调节靶向胞质 Hsp70 系统,基于其客户关系,可以调整蛋白稳态缓冲能力的 SCV 容差,为 NPC1 人群中减轻系统性和神经疾病提供一种方法。