Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA.
Institute of Systems and Physical Biology, Shenzhen Bay Laboratory, Shenzhen, China.
Nat Commun. 2024 Apr 18;15(1):3333. doi: 10.1038/s41467-024-47520-0.
Genetic variation in human populations can result in the misfolding and aggregation of proteins, giving rise to systemic and neurodegenerative diseases that require management by proteostasis. Here, we define the role of GRP94, the endoplasmic reticulum Hsp90 chaperone paralog, in managing alpha-1-antitrypsin deficiency on a residue-by-residue basis using Gaussian process regression-based machine learning to profile the spatial covariance relationships that dictate protein folding arising from sequence variants in the population. Covariance analysis suggests a role for the ATPase activity of GRP94 in controlling the N- to C-terminal cooperative folding of alpha-1-antitrypsin responsible for the correction of liver aggregation and lung-disease phenotypes of alpha-1-antitrypsin deficiency. Gaussian process-based spatial covariance profiling provides a standard model built on covariant principles to evaluate the role of proteostasis components in guiding information flow from genome to proteome in response to genetic variation, potentially allowing us to intervene in the onset and progression of complex multi-system human diseases.
人类群体中的遗传变异可导致蛋白质错误折叠和聚集,从而引发系统性和神经退行性疾病,需要通过蛋白质稳态来进行管理。在这里,我们使用基于高斯过程回归的机器学习,根据残基定义 GRP94(内质网 HSP90 伴侣蛋白的同源物)在逐个残基管理α-1-抗胰蛋白酶缺乏症方面的作用,以分析决定由人群中序列变异引起的蛋白质折叠的空间协方差关系。协方差分析表明,GRP94 的 ATP 酶活性在控制α-1-抗胰蛋白酶的 N 端到 C 端协同折叠中发挥作用,该折叠负责纠正α-1-抗胰蛋白酶缺乏症的肝脏聚集和肺部疾病表型。基于高斯过程的空间协方差分析提供了一个基于协变原理的标准模型,用于评估蛋白质稳态成分在指导从基因组到蛋白质组的信息流以响应遗传变异方面的作用,这可能使我们能够干预复杂的多系统人类疾病的发生和进展。