Suppr超能文献

使用 GALAXY 在 CASP13 中预测蛋白质寡聚物结构。

Prediction of protein oligomer structures using GALAXY in CASP13.

机构信息

Department of Chemistry, Seoul National University, Seoul, Republic of Korea.

出版信息

Proteins. 2019 Dec;87(12):1233-1240. doi: 10.1002/prot.25814. Epub 2019 Oct 9.

Abstract

Many proteins need to form oligomers to be functional, so oligomer structures provide important clues to biological roles of proteins. Prediction of oligomer structures therefore can be a useful tool in the absence of experimentally resolved structures. In this article, we describe the server and human methods that we used to predict oligomer structures in the CASP13 experiment. Performances of the methods on the 42 CASP13 oligomer targets consisting of 30 homo-oligomers and 12 hetero-oligomers are discussed. Our server method, Seok-assembly, generated models with interface contact similarity measure greater than 0.2 as model 1 for 11 homo-oligomer targets when proper templates existed in the database. Model refinement methods such as loop modeling and molecular dynamics (MD)-based overall refinement failed to improve model qualities when target proteins have domains not covered by templates or when chains have very small interfaces. In human predictions, additional experimental data such as low-resolution electron microscopy (EM) map were utilized. EM data could assist oligomer structure prediction by providing a global shape of the complex structure.

摘要

许多蛋白质需要形成寡聚体才能发挥功能,因此寡聚体结构为蛋白质的生物学功能提供了重要线索。因此,在没有实验确定结构的情况下,预测寡聚体结构可以成为一种有用的工具。在本文中,我们描述了我们在 CASP13 实验中用于预测寡聚体结构的服务器和人类方法。讨论了这些方法在由 30 个同源寡聚体和 12 个异源寡聚体组成的 42 个 CASP13 寡聚体靶标上的性能。当数据库中有适当的模板时,我们的服务器方法 Seok-assembly 为 11 个同源寡聚体靶标生成了具有界面接触相似性度量大于 0.2 的模型 1。当靶蛋白的结构域没有模板覆盖或链的界面非常小时,循环建模和基于分子动力学 (MD) 的整体细化等模型细化方法无法提高模型质量。在人类预测中,还利用了低分辨率电子显微镜 (EM) 图谱等额外的实验数据。EM 数据可以通过提供复合物结构的全局形状来辅助寡聚体结构预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验