Suppr超能文献

对接方法在建模蛋白中的应用。

Application of docking methodologies to modeled proteins.

机构信息

Computational Biology Program, The University of Kansas, Lawrence, Kansas, USA.

Centre for Integrative Systems Biology and Bioinformatics, Department of Life Sciences, Imperial College London, South Kensington, London, UK.

出版信息

Proteins. 2020 Sep;88(9):1180-1188. doi: 10.1002/prot.25889. Epub 2020 Mar 20.

Abstract

Protein docking is essential for structural characterization of protein interactions. Besides providing the structure of protein complexes, modeling of proteins and their complexes is important for understanding the fundamental principles and specific aspects of protein interactions. The accuracy of protein modeling, in general, is still less than that of the experimental approaches. Thus, it is important to investigate the applicability of docking techniques to modeled proteins. We present new comprehensive benchmark sets of protein models for the development and validation of protein docking, as well as a systematic assessment of free and template-based docking techniques on these sets. As opposed to previous studies, the benchmark sets reflect the real case modeling/docking scenario where the accuracy of the models is assessed by the modeling procedure, without reference to the native structure (which would be unknown in practical applications). We also expanded the analysis to include docking of protein pairs where proteins have different structural accuracy. The results show that, in general, the template-based docking is less sensitive to the structural inaccuracies of the models than the free docking. The near-native docking poses generated by the template-based approach, typically, also have higher ranks than those produces by the free docking (although the free docking is indispensable in modeling the multiplicity of protein interactions in a crowded cellular environment). The results show that docking techniques are applicable to protein models in a broad range of modeling accuracy. The study provides clear guidelines for practical applications of docking to protein models.

摘要

蛋白质对接对于蛋白质相互作用的结构特征至关重要。除了提供蛋白质复合物的结构外,蛋白质及其复合物的建模对于理解蛋白质相互作用的基本原理和特定方面也很重要。一般来说,蛋白质建模的准确性仍然低于实验方法。因此,研究对接技术在建模蛋白质上的适用性非常重要。我们提出了新的综合蛋白质模型基准集,用于蛋白质对接的开发和验证,以及对这些集合上的自由对接和基于模板的对接技术的系统评估。与以前的研究不同,基准集反映了实际的建模/对接情况,其中模型的准确性是通过建模过程评估的,而不参考(在实际应用中未知的)天然结构。我们还将分析扩展到包括对接具有不同结构准确性的蛋白质对。结果表明,一般来说,基于模板的对接对模型的结构不准确的敏感性低于自由对接。基于模板的方法生成的近天然对接构象通常比自由对接产生的构象具有更高的等级(尽管在模拟拥挤的细胞环境中蛋白质的多种相互作用方面,自由对接是必不可少的)。结果表明,对接技术可广泛应用于具有不同建模精度的蛋白质模型。该研究为对接在蛋白质模型中的实际应用提供了明确的指导。

相似文献

1
Application of docking methodologies to modeled proteins.
Proteins. 2020 Sep;88(9):1180-1188. doi: 10.1002/prot.25889. Epub 2020 Mar 20.
2
Modeling complexes of modeled proteins.
Proteins. 2017 Mar;85(3):470-478. doi: 10.1002/prot.25183. Epub 2016 Oct 24.
3
A benchmark testing ground for integrating homology modeling and protein docking.
Proteins. 2017 Jan;85(1):10-16. doi: 10.1002/prot.25063. Epub 2016 Nov 13.
4
Structural quality of unrefined models in protein docking.
Proteins. 2017 Jan;85(1):39-45. doi: 10.1002/prot.25188. Epub 2016 Nov 13.
5
Protein models docking benchmark 2.
Proteins. 2015 May;83(5):891-7. doi: 10.1002/prot.24784. Epub 2015 Mar 25.
6
How to choose templates for modeling of protein complexes: Insights from benchmarking template-based docking.
Proteins. 2020 Aug;88(8):1070-1081. doi: 10.1002/prot.25875. Epub 2020 Feb 7.
7
Protein models: the Grand Challenge of protein docking.
Proteins. 2014 Feb;82(2):278-87. doi: 10.1002/prot.24385. Epub 2013 Oct 17.
8
GWYRE: A Resource for Mapping Variants onto Experimental and Modeled Structures of Human Protein Complexes.
J Mol Biol. 2022 Jun 15;434(11):167608. doi: 10.1016/j.jmb.2022.167608. Epub 2022 Apr 27.
9
Assessing the applicability of template-based protein docking in the twilight zone.
Structure. 2014 Sep 2;22(9):1356-1362. doi: 10.1016/j.str.2014.07.009. Epub 2014 Aug 21.
10

引用本文的文献

1
2
Genome-Wide Identification and Evolutionary Analysis of Functional Genes in Plant Species.
Genes (Basel). 2024 Dec 17;15(12):1614. doi: 10.3390/genes15121614.
3
Targeting GSDME-mediated macrophage polarization for enhanced antitumor immunity in hepatocellular carcinoma.
Cell Mol Immunol. 2024 Dec;21(12):1505-1521. doi: 10.1038/s41423-024-01231-0. Epub 2024 Nov 4.
4
Diffusion of proteins in crowded solutions studied by docking-based modeling.
J Chem Phys. 2024 Sep 7;161(9). doi: 10.1063/5.0220545.
5
Glycerophosphoinositol modulates FGA and NOTCH3 in exercise-induced muscle adaptation and colon cancer progression.
Front Pharmacol. 2024 Jul 26;15:1430400. doi: 10.3389/fphar.2024.1430400. eCollection 2024.
7
Synergistic acceleration of machine learning and molecular docking for prostate-specific antigen ligand design.
RSC Adv. 2024 Mar 13;14(12):8240-8250. doi: 10.1039/d3ra08550c. eCollection 2024 Mar 6.
8
Pan-Cancer Analysis of PGAM1 and Its Experimental Validation in Uveal Melanoma Progression.
J Cancer. 2024 Feb 17;15(7):2074-2094. doi: 10.7150/jca.93398. eCollection 2024.
9
Structure-based prediction of protein-protein interaction network in rice.
Genet Mol Biol. 2024 Feb 2;47(1):e20230068. doi: 10.1590/1678-4685-GMB-2023-0068. eCollection 2024.
10
Impact of AlphaFold on structure prediction of protein complexes: The CASP15-CAPRI experiment.
Proteins. 2023 Dec;91(12):1658-1683. doi: 10.1002/prot.26609. Epub 2023 Oct 31.

本文引用的文献

1
Blind prediction of homo- and hetero-protein complexes: The CASP13-CAPRI experiment.
Proteins. 2019 Dec;87(12):1200-1221. doi: 10.1002/prot.25838. Epub 2019 Oct 25.
2
Prediction of protein oligomer structures using GALAXY in CASP13.
Proteins. 2019 Dec;87(12):1233-1240. doi: 10.1002/prot.25814. Epub 2019 Oct 9.
3
Template-based modeling by ClusPro in CASP13 and the potential for using co-evolutionary information in docking.
Proteins. 2019 Dec;87(12):1241-1248. doi: 10.1002/prot.25808. Epub 2019 Oct 1.
4
Assessment of protein model structure accuracy estimation in CASP13: Challenges in the era of deep learning.
Proteins. 2019 Dec;87(12):1351-1360. doi: 10.1002/prot.25804. Epub 2019 Aug 30.
5
Integrating ab initio and template-based algorithms for protein-protein complex structure prediction.
Bioinformatics. 2020 Feb 1;36(3):751-757. doi: 10.1093/bioinformatics/btz623.
6
Structural modeling of protein complexes: Current capabilities and challenges.
Proteins. 2019 Dec;87(12):1222-1232. doi: 10.1002/prot.25774. Epub 2019 Jul 22.
7
Flexible Backbone Assembly and Refinement of Symmetrical Homomeric Complexes.
Structure. 2019 Jun 4;27(6):1041-1051.e8. doi: 10.1016/j.str.2019.03.014. Epub 2019 Apr 18.
8
What method to use for protein-protein docking?
Curr Opin Struct Biol. 2019 Apr;55:1-7. doi: 10.1016/j.sbi.2018.12.010. Epub 2019 Feb 1.
9
Refinement of protein-protein complexes in contact map space with metadynamics simulations.
Proteins. 2019 Jan;87(1):12-22. doi: 10.1002/prot.25612. Epub 2018 Oct 30.
10
Contact Potential for Structure Prediction of Proteins and Protein Complexes from Potts Model.
Biophys J. 2018 Sep 4;115(5):809-821. doi: 10.1016/j.bpj.2018.07.035. Epub 2018 Aug 8.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验