Department of Molecular Cell Systems Biology, University of California, Riverside, Riverside, CA 92521.
Department of Biochemistry and Molecular Biology, State University of New York Upstate Medical University, Syracuse, NY 13210.
Mol Biol Cell. 2019 Oct 15;30(22):2771-2789. doi: 10.1091/mbc.E19-03-0156. Epub 2019 Sep 11.
Budding yeast treated with hydroxyurea (HU) activate the S phase checkpoint kinase Rad53, which prevents DNA replication forks from undergoing aberrant structural transitions and nuclease processing. Rad53 is also required to prevent premature extension of the mitotic spindle that assembles during a HU-extended S phase. Here we present evidence that checkpoint restraint of spindle extension is directly coupled to Rad53 control of replication fork stability. In budding yeast, centromeres are flanked by replication origins that fire in early S phase. Mutations affecting the Zn-finger of Dbf4, an origin activator, preferentially reduce centromere-proximal origin firing in HU, corresponding with suppression of spindle extension. Inactivating 1 nuclease or displacing centromeres from origins provides a similar suppression. Conversely, short-circuiting Rad53 targeting of Dbf4, Sld3, and Dun1, substrates contributing to fork stability, induces spindle extension. These results reveal spindle extension in HU-treated mutants is a consequence of replication fork catastrophes at centromeres. When such catastrophes occur, centromeres become susceptible to nucleases, disrupting kinetochore function and spindle force balancing mechanisms. At the same time, our data indicate centromere duplication is not required to stabilize S phase spindle structure, leading us to propose a model for how monopolar kinetochore-spindle attachments may contribute to spindle force balance in HU.
用羟基脲(HU)处理的芽殖酵母激活 S 期检查点激酶 Rad53,这可防止 DNA 复制叉发生异常结构转变和核酸酶加工。Rad53 还需要防止在 HU 延长的 S 期期间组装的有丝分裂纺锤体过早延伸。在这里,我们提供的证据表明,纺锤体延伸的检查点限制直接与 Rad53 控制复制叉稳定性相关。在芽殖酵母中,着丝粒被复制起点包围,这些起点在早期 S 期启动。影响 Dbf4 的锌指突变体(一种起始激活物),优先减少 HU 中着丝粒近端起始的点火,对应于纺锤体延伸的抑制。失活 1 号核酸酶或将着丝粒从起始点移位提供了类似的抑制作用。相反,绕过 Rad53 对 Dbf4、Sld3 和 Dun1 的靶向作用,这些是有助于叉稳定的底物,会诱导纺锤体延伸。这些结果表明 HU 处理的 突变体中的纺锤体延伸是着丝粒处复制叉灾难的结果。当这种灾难发生时,着丝粒容易受到核酸酶的影响,破坏动粒功能和纺锤体力平衡机制。同时,我们的数据表明着丝粒复制对于稳定 S 期纺锤体结构不是必需的,这使我们提出了一个模型,说明单极动粒-纺锤体附着如何有助于 HU 中的纺锤体力平衡。