Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Murcia, Spain.
Biomedical Research Institute of Murcia (IMIB), Murcia, Spain.
PLoS One. 2019 Sep 11;14(9):e0218500. doi: 10.1371/journal.pone.0218500. eCollection 2019.
Ornithine decarboxylase (ODC) is a key enzyme in the biosynthesis of polyamines, organic cations that are implicated in many cellular processes. The enzyme is regulated at the post-translational level by an unusual system that includes antizymes (AZs) and antizyme inhibitors (AZINs). Most studies on this complex regulatory mechanism have been focused on human and rodent cells, showing that AZINs (AZIN1 and AZIN2) are homologues of ODC but devoid of enzymatic activity. Little is known about Xenopus ODC and its paralogues, in spite of the relevance of Xenopus as a model organism for biomedical research. We have used the information existing in different genomic databases to compare the functional properties of the amphibian ODC1, AZIN1 and AZIN2/ODC2, by means of transient transfection experiments of HEK293T cells. Whereas the properties of xlODC1 and xlAZIN1 were similar to those reported for their mammalian orthologues, the former catalyzing the decarboxylation of L-ornithine preferentially to that of L-lysine, xlAZIN2/xlODC2 showed important differences with respect to human and mouse AZIN2. xlAZIN2 did not behave as an antizyme inhibitor, but it rather acts as an authentic decarboxylase forming cadaverine, due to its higher affinity to L-lysine than to L-ornithine as substrate; so, in accordance with this, it should be named as lysine decarboxylase (LDC) or lysine/ornithine decarboxylase (LODC). In addition, AZ1 stimulated the degradation of xlAZIN2 by the proteasome, but the removal of the 21 amino acid C-terminal tail, with a sequence quite different to that of mouse or human ODC, made the protein resistant to degradation. Collectively, our results indicate that in Xenopus there is only one antizyme inhibitor (xlAZIN1) and two decarboxylases, xlODC1 and xlLDC, with clear preferences for L-ornithine and L-lysine, respectively.
鸟氨酸脱羧酶(ODC)是多胺生物合成中的关键酶,多胺是参与许多细胞过程的有机阳离子。该酶在翻译后水平受到一种不寻常的系统的调节,该系统包括抗酶(AZs)和抗酶抑制剂(AZINs)。大多数关于这个复杂的调节机制的研究都集中在人类和啮齿动物细胞上,表明 AZINs(AZIN1 和 AZIN2)是 ODC 的同源物,但没有酶活性。尽管 Xenopus 作为生物医学研究的模型生物具有重要意义,但对 Xenopus ODC 及其同工酶知之甚少。我们使用不同基因组数据库中存在的信息,通过瞬时转染 HEK293T 细胞的实验,比较了两栖动物 ODC1、AZIN1 和 AZIN2/ODC2 的功能特性。虽然 xlODC1 和 xlAZIN1 的特性与它们的哺乳动物同源物相似,前者优先催化 L-鸟氨酸脱羧,而不是 L-赖氨酸,xlAZIN2/xlODC2 与人或鼠 AZIN2 有重要区别。xlAZIN2 不作为抗酶抑制剂发挥作用,而是由于其对 L-赖氨酸的亲和力高于 L-鸟氨酸作为底物,因此作为真正的脱羧酶形成尸胺,因此,根据这一点,它应该被命名为赖氨酸脱羧酶(LDC)或赖氨酸/鸟氨酸脱羧酶(LODC)。此外,AZ1 刺激蛋白酶体降解 xlAZIN2,但去除 21 个氨基酸的 C 端尾部,序列与鼠或人 ODC 非常不同,使蛋白质不易降解。总的来说,我们的结果表明,在 Xenopus 中只有一种抗酶抑制剂(xlAZIN1)和两种脱羧酶,xlODC1 和 xlLDC,它们分别对 L-鸟氨酸和 L-赖氨酸有明显的偏好。