Suppr超能文献

快速通道算法:如何区分“硬皮病样模式”和“非硬皮病样模式”。

Fast track algorithm: How to differentiate a "scleroderma pattern" from a "non-scleroderma pattern".

机构信息

Department of Internal Medicine, Ghent University, Ghent, Belgium; Department of Rheumatology, Ghent University Hospital, Ghent, Belgium; Unit for Molecular Immunology and Inflammation, VIB Inflammation Research Center (IRC), Ghent, Belgium.

Department of Internal Medicine, Ghent University, Ghent, Belgium; Department of Rheumatology, Ghent University Hospital, Ghent, Belgium.

出版信息

Autoimmun Rev. 2019 Nov;18(11):102394. doi: 10.1016/j.autrev.2019.102394. Epub 2019 Sep 11.

Abstract

OBJECTIVES

This study was designed to propose a simple "Fast Track algorithm" for capillaroscopists of any level of experience to differentiate "scleroderma patterns" from "non-scleroderma patterns" on capillaroscopy and to assess its inter-rater reliability.

METHODS

Based on existing definitions to categorise capillaroscopic images as "scleroderma patterns" and taking into account the real life variability of capillaroscopic images described standardly according to the European League Against Rheumatism (EULAR) Study Group on Microcirculation in Rheumatic Diseases, a fast track decision tree, the "Fast Track algorithm" was created by the principal expert (VS) to facilitate swift categorisation of an image as "non-scleroderma pattern (category 1)" or "scleroderma pattern (category 2)". Mean inter-rater reliability between all raters (experts/attendees) of the 8th EULAR course on capillaroscopy in Rheumatic Diseases (Genoa, 2018) and, as external validation, of the 8th European Scleroderma Trials and Research group (EUSTAR) course on systemic sclerosis (SSc) (Nijmegen, 2019) versus the principal expert, as well as reliability between the rater pairs themselves was assessed by mean Cohen's and Light's kappa coefficients.

RESULTS

Mean Cohen's kappa was 1/0.96 (95% CI 0.95-0.98) for the 6 experts/135 attendees of the 8th EULAR capillaroscopy course and 1/0.94 (95% CI 0.92-0.96) for the 3 experts/85 attendees of the 8th EUSTAR SSc course. Light's kappa was 1/0.92 at the 8th EULAR capillaroscopy course, and 1/0.87 at the 8th EUSTAR SSc course.

CONCLUSION

For the first time, a clinical expert based fast track decision algorithm has been developed to differentiate a "non-scleroderma" from a "scleroderma pattern" on capillaroscopic images, demonstrating excellent reliability when applied by capillaroscopists with varying levels of expertise versus the principal expert and corroborated with external validation.

摘要

目的

本研究旨在为毛细血管镜检查专家设计一种简单的“快速通道算法”,以便在毛细血管镜检查中区分“硬皮病模式”和“非硬皮病模式”,并评估其组内信度。

方法

根据现有定义将毛细血管图像分类为“硬皮病模式”,并考虑到根据欧洲抗风湿病联盟(EULAR)风湿病微循环研究组标准描述的毛细血管图像的实际生活变异性,创建了一个快速通道决策树,即“快速通道算法”,由主要专家(VS)创建,以方便快速将图像分类为“非硬皮病模式(第 1 类)”或“硬皮病模式(第 2 类)”。第 8 届 EULAR 毛细血管镜检查风湿病课程(热那亚,2018 年)的所有评估者(专家/学员)之间以及作为外部验证的第 8 届欧洲硬皮病试验和研究组(EUSTAR)系统性硬化症(SSc)课程(奈梅亨,2019 年)与主要专家之间的平均组内信度,以及评估者对之间的可靠性本身通过平均 Cohen 和 Light 的 kappa 系数进行评估。

结果

第 8 届 EULAR 毛细血管镜检查课程的 6 名专家/135 名学员和第 8 届 EUSTAR SSc 课程的 3 名专家/85 名学员的平均 Cohen's kappa 分别为 1/0.96(95%CI 0.95-0.98)和 1/0.94(95%CI 0.92-0.96)。第 8 届 EULAR 毛细血管镜检查课程的 Light's kappa 为 1/0.92,第 8 届 EUSTAR SSc 课程的 Light's kappa 为 1/0.87。

结论

首次开发了一种基于临床专家的快速通道决策算法,用于区分毛细血管图像上的“非硬皮病”和“硬皮病模式”,当应用于具有不同专业水平的毛细血管镜检查专家时,该算法表现出出色的可靠性,并通过外部验证得到证实。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验