A.N. Bach Institute of Biochemistry, Federal Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russian Federation; Department of Biophysics, Faculty of Biology, M.V. Lomonosov Moscow State University, Moscow, Russian Federation.
Instituto de Histología y Embriología (IHEM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), CC56, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina; Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo (UNCuyo), Mendoza, Argentina.
Prog Mol Biol Transl Sci. 2019;166:19-61. doi: 10.1016/bs.pmbts.2019.03.007. Epub 2019 Apr 4.
Protein-protein interactions (PPIs) mediate a variety of cellular processes and form complex networks, where connectivity is achieved owing to the "hub" proteins whose interaction with multiple protein partners is facilitated by the intrinsically disordered protein regions (IDPRs) and posttranslational modifications (PTMs). Universal regulatory proteins of the eukaryotic 14-3-3 family nicely exemplify these concepts and are the focus of this chapter. The extremely wide interactome of 14-3-3 proteins is characterized by high levels of intrinsic disorder (ID) enabling protein phosphorylation and consequent specific binding to the well-structured 14-3-3 dimers, one of the first phosphoserine/phosphothreonine binding modules discovered. However, high ID enrichment also challenges structural studies, thereby limiting the progress in the development of small molecule modulators of the key 14-3-3 PPIs of increased medical importance. Besides the well-known structural flexibility of their variable C-terminal tails, recent studies revealed the strong and conserved ID propensity hidden in the N-terminal segment of 14-3-3 proteins (~40 residues), normally forming the α-helical dimerization region, that may have a potential role for the dimer/monomer dynamics and recently reported moonlighting chaperone-like activity of these proteins. We review the role of ID in the 14-3-3 structure, their interactome, and also in selected 14-3-3 complexes. In addition, we discuss approaches that, in the future, may help minimize the disproportion between the large amount of known 14-3-3 partners and the small number of 14-3-3 complexes characterized with atomic precision, to unleash the whole potential of 14-3-3 PPIs as drug targets.
蛋白质-蛋白质相互作用 (PPIs) 介导了多种细胞过程,并形成了复杂的网络,其中连接性是由于“枢纽”蛋白质实现的,这些蛋白质的多个蛋白质伴侣的相互作用是由固有无序蛋白质区域 (IDPRs) 和翻译后修饰 (PTMs) 促进的。真核细胞 14-3-3 家族的通用调节蛋白很好地体现了这些概念,是本章的重点。14-3-3 蛋白的极其广泛的互作组的特点是高水平的固有无序 (ID),使蛋白质磷酸化,并随后与结构良好的 14-3-3 二聚体特异性结合,这是最早发现的磷酸丝氨酸/磷酸苏氨酸结合模块之一。然而,高 ID 富集也对结构研究提出了挑战,从而限制了开发关键 14-3-3 PPI 的小分子调节剂的进展,这些 PPI 具有增加的医学重要性。除了其可变 C 端尾部众所周知的结构灵活性外,最近的研究还揭示了隐藏在 14-3-3 蛋白的 N 端片段 (~40 个残基) 中的强烈和保守的 ID 倾向,该片段通常形成 α-螺旋二聚化区域,这可能对二聚体/单体动力学有潜在作用,并最近报道了这些蛋白质的兼职分子伴侣样活性。我们综述了 ID 在 14-3-3 结构、互作组以及选定的 14-3-3 复合物中的作用。此外,我们讨论了未来可能有助于最小化大量已知 14-3-3 伴侣与用原子精度表征的少量 14-3-3 复合物之间不成比例的方法,以释放 14-3-3 PPI 作为药物靶点的全部潜力。