A.N. Bach Institute of Biochemistry, Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, 119071 Moscow, Russian Federation.
Biochem J. 2020 Apr 17;477(7):1219-1225. doi: 10.1042/BCJ20200084.
Many major protein-protein interaction networks are maintained by 'hub' proteins with multiple binding partners, where interactions are often facilitated by intrinsically disordered protein regions that undergo post-translational modifications, such as phosphorylation. Phosphorylation can directly affect protein function and control recognition by proteins that 'read' the phosphorylation code, re-wiring the interactome. The eukaryotic 14-3-3 proteins recognizing multiple phosphoproteins nicely exemplify these concepts. Although recent studies established the biochemical and structural basis for the interaction of the 14-3-3 dimers with several phosphorylated clients, understanding their assembly with partners phosphorylated at multiple sites represents a challenge. Suboptimal sequence context around the phosphorylated residue may reduce binding affinity, resulting in quantitative differences for distinct phosphorylation sites, making hierarchy and priority in their binding rather uncertain. Recently, Stevers et al. [Biochemical Journal (2017) 474: 1273-1287] undertook a remarkable attempt to untangle the mechanism of 14-3-3 dimer binding to leucine-rich repeat kinase 2 (LRRK2) that contains multiple candidate 14-3-3-binding sites and is mutated in Parkinson's disease. By using the protein-peptide binding approach, the authors systematically analyzed affinities for a set of LRRK2 phosphopeptides, alone or in combination, to a 14-3-3 protein and determined crystal structures for 14-3-3 complexes with selected phosphopeptides. This study addresses a long-standing question in the 14-3-3 biology, unearthing a range of important details that are relevant for understanding binding mechanisms of other polyvalent proteins.
许多主要的蛋白质-蛋白质相互作用网络是由具有多个结合伴侣的“枢纽”蛋白质维持的,其中相互作用通常是由经历翻译后修饰(如磷酸化)的固有无序蛋白质区域促进的。磷酸化可以直接影响蛋白质功能,并控制“读取”磷酸化密码的蛋白质的识别,重新构建相互作用网络。识别多种磷酸化蛋白的真核 14-3-3 蛋白很好地说明了这些概念。尽管最近的研究确立了 14-3-3 二聚体与几种磷酸化客户相互作用的生化和结构基础,但理解它们与多个磷酸化位点的伙伴组装仍然是一个挑战。磷酸化残基周围的序列上下文不理想可能会降低结合亲和力,从而导致不同磷酸化位点的定量差异,使它们的结合具有层次和优先级变得不确定。最近,Stevers 等人[Biochemical Journal(2017)474:1273-1287] 尝试解开 14-3-3 二聚体与富含亮氨酸重复激酶 2(LRRK2)结合的机制,LRRK2 含有多个候选 14-3-3 结合位点,并在帕金森病中发生突变。通过使用蛋白质-肽结合方法,作者系统地分析了一组 LRRK2 磷酸肽的亲和力,这些磷酸肽单独或组合与 14-3-3 蛋白结合,并确定了与选定磷酸肽结合的 14-3-3 复合物的晶体结构。这项研究解决了 14-3-3 生物学中的一个长期存在的问题,揭示了一系列对于理解其他多价蛋白结合机制相关的重要细节。