Suppr超能文献

基于社交媒体的人口健康预测的实证研究。

An empirical study on prediction of population health through social media.

机构信息

Deakin University, Applied Artificial Intelligence Institute, Geelong, VIC 3220, Australia; Nha Trang University, Faculty of Information Technology, Khanh Hoa, Viet Nam.

Deakin University, Applied Artificial Intelligence Institute, Geelong, VIC 3220, Australia.

出版信息

J Biomed Inform. 2019 Nov;99:103277. doi: 10.1016/j.jbi.2019.103277. Epub 2019 Sep 12.

Abstract

Public health measurement is important for government administration as it provides indicators and implications to public healthcare strategies. The measurement of health status has been traditionally conducted via surveys in the forms of pre-designed questionnaires to collect responses from targeted participants. Apart from benefits, traditional approach is costly, time-consuming, and not scalable. These limitations make a major obstacle to policy makers to develop up-to-date healthcare programs. This paper studies the use of health-related information conveyed in user-generated content from social media for prediction of health outcomes at population level. Specifically, we investigate linguistic features for analysing textual data. We propose the use of visual features learnt from deep neural networks for understanding visual data. We introduce collective social capital information from location-based social media data. We conducted extensive experiments on large-scale datasets collected from two online social networks: Foursquare and Flickr, against the task of prediction of the U.S. county health indices. Experimental results showed that visual and collective social capital data achieved comparable prediction performance and outperformed textual information. These promising results also suggest the potential of social media for health analysis at population scales.

摘要

公共卫生计量对于政府管理很重要,因为它为公共医疗策略提供了指标和启示。健康状况的测量传统上是通过调查来进行的,形式是预先设计的问卷,从目标参与者那里收集回答。除了好处之外,传统方法成本高、耗时且不可扩展。这些限制使得政策制定者在制定最新的医疗保健计划方面面临重大障碍。本文研究了在社交媒体的用户生成内容中使用与健康相关的信息来预测人群的健康结果。具体来说,我们研究了用于分析文本数据的语言特征。我们提出了使用从深度神经网络中学到的视觉特征来理解视觉数据。我们从基于位置的社交媒体数据中引入了集体社会资本信息。我们在从两个在线社交网络:Foursquare 和 Flickr 收集的大型数据集上进行了广泛的实验,针对预测美国县健康指数的任务。实验结果表明,视觉和集体社会资本数据的预测性能相当,优于文本信息。这些有希望的结果还表明了社交媒体在人群规模上进行健康分析的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验