Mikhail S, McCubbin F M, Jenner F E, Shirey S B, Rumble D, Bowden R
1The School of Earth and Environmental Sciences, The University of St. Andrews, St. Andrews, Scotland, UK.
2Department of Earth and Planetary Sciences, Institute of Meteoritics, University of New Mexico, Albuquerque, NM USA.
Contrib Mineral Petrol. 2019;174(8):71. doi: 10.1007/s00410-019-1608-0. Epub 2019 Aug 19.
The petrogenesis and relationship of diamondite to well-studied monocrystalline and fibrous diamonds are poorly understood yet would potentially reveal new aspects of how diamond-forming fluids are transported through the lithosphere and equilibrate with surrounding silicates. Of 22 silicate- and oxide-bearing diamondites investigated, most yielded garnet intergrowths ( = 15) with major element geochemistry (i.e. Ca-Cr) classifying these samples as low-Ca websteritic or eclogitic. The garnet REE patterns fit an equilibrium model suggesting the diamond-forming fluid shares an affinity with high-density fluids (HDF) observed in fibrous diamonds, specifically on the join between the saline-carbonate end-members. The δC values for the diamonds range from - 5.27 to - 22.48‰ (V-PDB) with δO values for websteritic garnets ranging from + 7.6 to + 5.9‰ (V-SMOW). The combined C-O stable isotope data support a model for a hydrothermally altered and organic carbon-bearing subducted crustal source(s) for the diamond- and garnet-forming media. The nitrogen aggregation states of the diamonds require that diamondite-formation event(s) pre-dates fibrous diamond-formation and post-dates most of the gem monocrystalline diamond-formation events at Orapa. The modelled fluid compositions responsible for the precipitation of diamondites match the fluid-poor and fluid-rich (fibrous) monocrystalline diamonds, where all grow from HDFs within the saline-silicic-carbonatitic ternary system. However, while the nature of the parental fluid(s) share a common lithophile element geochemical affinity, the origin(s) of the saline, silicic, and/or carbonatitic components of these HDFs do not always share a common origin. Therefore, it is wholly conceivable that the diamondites are evidence of a distinct and temporally unconstrained tectono-thermal diamond-forming event beneath the Kaapvaal craton.
对透辉石金刚石的成因及其与已充分研究的单晶金刚石和纤维状金刚石的关系了解甚少,但这可能会揭示金刚石形成流体如何通过岩石圈传输并与周围硅酸盐平衡的新情况。在研究的22个含硅酸盐和氧化物的透辉石金刚石中,大多数(15个)产生了石榴石共生体,其主要元素地球化学特征(即钙-铬)将这些样品归类为低钙二辉橄榄岩质或榴辉岩质。石榴石的稀土元素模式符合平衡模型,表明金刚石形成流体与在纤维状金刚石中观察到的高密度流体(HDF)具有亲和力,特别是在盐水-碳酸盐端元之间的连线上。金刚石的δC值范围为-5.27至-22.48‰(V-PDB),二辉橄榄岩质石榴石的δO值范围为+7.6至+5.9‰(V-SMOW)。碳-氧稳定同位素综合数据支持了一个模型,即金刚石和石榴石形成介质的来源是经过热液蚀变且含有机碳的俯冲地壳。金刚石的氮聚集状态表明,透辉石金刚石形成事件早于纤维状金刚石形成,且晚于奥拉帕大多数宝石级单晶金刚石形成事件。模拟的导致透辉石金刚石沉淀的流体成分与贫流体和富流体(纤维状)单晶金刚石相匹配,所有这些金刚石都在盐水-硅质-碳酸盐三元系统内的HDF中生长。然而,虽然母流体的性质具有共同的亲石元素地球化学亲和力,但这些HDF的盐水、硅质和/或碳酸盐成分的来源并不总是相同。因此,完全可以想象,透辉石金刚石是卡普瓦尔克拉通之下一个独特的、时间上不受限制的构造-热金刚石形成事件的证据。