Suppr超能文献

调控金属相二硫化钼中钴和氧掺杂剂的面内结构以实现高效碱性析氢

Engineering the In-Plane Structure of Metallic Phase Molybdenum Disulfide Co and O Dopants toward Efficient Alkaline Hydrogen Evolution.

作者信息

Cao Dengfeng, Ye Ke, Moses Oyawale Adetunji, Xu Wenjie, Liu Daobin, Song Pin, Wu Chuanqiang, Wang Changda, Ding Shiqing, Chen Shuangming, Ge Binghui, Jiang Jun, Song Li

机构信息

National Synchrotron Radiation Laboratory, Hefei National Laboratory for Physical Sciences at the Microscale, CAS Center for Excellence in Nanoscience, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), School of Chemistry and Materials Science , University of Science and Technology of China , Hefei , Anhui 230026 , China.

School of Materials Science and Engineering , Nanyang Technological University , 639798 Singapore.

出版信息

ACS Nano. 2019 Oct 22;13(10):11733-11740. doi: 10.1021/acsnano.9b05714. Epub 2019 Sep 20.

Abstract

Molybdenum disulfide (MoS) has attracted much attention as a promising alternative to Pt-based catalysts for highly efficient hydrogen generation. However, it suffers sluggish kinetics for driving the hydrogen evolution reaction (HER) process because of inert basal planes, especially in alkaline solution. Here, we show a combination of heteroatom doping and phase transformation strategies to engineer the in-plane structure of MoS, that trigger their catalytic activities. Systematic characterizations are performed with advanced aberration-corrected microscopy and X-ray techniques, indicating that an as-designed MoS catalyst has a distorted zigzag-chain superlattice in metallic phase, while its in-plane structure was engineered the incorporation of cobalt and oxygen species. The optimal Co, O dual-doped metallic phase molybdenum disulfide (1T-MoS) electrocatalyst shows a significantly enhanced HER activity with a low overpotential of 113 mV at 10 mA cm and corresponding small Tafel slope of 50 mV dec, accompanied by the robust stability in alkaline media. The calculated turnover frequency is higher than 6.65 H s at an overpotential of 200 mV. More in-depth insights from the first-principle calculations illustrate that the water dissociation as a rate-determining step was largely accelerated by the in-plane Co-O-Mo species and fast electron transfer of the catalyst. Benefiting from ingenious design and fine identifications, this work provides a fundamental understanding of the relationships among heteroatom doping, phase transformation, and performance for MoS-based catalysts.

摘要

二硫化钼(MoS₂)作为一种有望替代铂基催化剂用于高效制氢的材料,已引起了广泛关注。然而,由于其惰性基面,尤其是在碱性溶液中,驱动析氢反应(HER)过程的动力学较为缓慢。在此,我们展示了一种杂原子掺杂和相变策略的组合,用于设计MoS₂的面内结构,从而触发其催化活性。使用先进的像差校正显微镜和X射线技术进行了系统表征,结果表明,所设计的MoS₂催化剂在金属相中具有扭曲的锯齿链超晶格,而其面内结构通过掺入钴和氧物种进行了设计。最佳的Co、O双掺杂金属相二硫化钼(1T-MoS₂)电催化剂表现出显著增强的HER活性,在10 mA cm⁻²时过电位低至113 mV,相应的塔菲尔斜率为50 mV dec⁻¹,并且在碱性介质中具有稳健的稳定性。在200 mV过电位下计算得到的周转频率高于6.65 H s⁻¹。第一性原理计算的更深入见解表明,作为速率决定步骤的水离解在很大程度上被面内Co-O-Mo物种和催化剂的快速电子转移加速。受益于巧妙的设计和精细的表征,这项工作为基于MoS₂的催化剂的杂原子掺杂、相变和性能之间的关系提供了基本理解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验