Wang Peng, Zhao Danyang, Zhang Peng, Hui Xiaobin, Zhang Zhiwei, Wang Rutao, Wang Chengxiang, Ge Xiaoli, Liu Xiaojing, Li Yuguang C, Yin Longwei
Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials, Ministry of Education, School of Materials Science and Engineering, Shandong University, Jinan, PR China.
The Hong Kong Polytechnic University, Yuk Choi Road No. 11, Hung Hom, Kowloon, Hong Kong.
Nat Commun. 2025 Feb 7;16(1):1453. doi: 10.1038/s41467-024-55073-5.
The metallic phase MoS (1T-MoS) supported metal-nanocatalyst is an appealing material system for accelerating the redox kinetics of non-aqueous Li | |O batteries. However, the drawbacks associated with the surface orbital steric effect and the internal electron coupling results in a detrimental effect for the stability of 1T-MoS, especially for the interface charge transfer. This makes it difficult to incorporate guest metal nanoparticles without compromising the 1 T phase support. To circumvent these issues, here we propose a p-block element (In-O) doping strategy to stabilize the 1 T phase MoS by moderating the surface orbital steric effect and strengthening the internal chemical bonding, and thus for the epitaxial Ru nanocatalyst graft on the stabilized 1T-MoS for Li | |O batteries. The experimental and theoretical analyzes indicate that the In-O-MoS@Ru enhances the O dissociation and facilitates the adsorption of LiO intermediates. This effect promotes the growth of weakly crystalline LiO films during oxygen reduction reaction, which can be more easily decomposed during the oxygen evolution reaction, thereby enhancing the bifunctional-catalytic kinetics. When employed at the positive electrode for non-aqueous Li | |O batteries, In-O-MoS@Ru shows an overpotential of 0.37 V and a cycling life of 284 cycles at 200 mA g with a final discharge specific capacity of 1000 mAh g at 25 °C.
金属相二硫化钼(1T-MoS)负载的金属纳米催化剂是一种用于加速非水锂氧电池氧化还原动力学的有吸引力的材料体系。然而,与表面轨道空间效应和内部电子耦合相关的缺点对1T-MoS的稳定性产生了不利影响,特别是对于界面电荷转移。这使得在不损害1T相载体的情况下难以掺入客体金属纳米颗粒。为了解决这些问题,我们在此提出一种p族元素(In-O)掺杂策略,通过缓和表面轨道空间效应和加强内部化学键来稳定1T相二硫化钼,从而在稳定的1T-MoS上外延生长用于锂氧电池的Ru纳米催化剂。实验和理论分析表明,In-O-MoS@Ru增强了氧解离并促进了LiO中间体的吸附。这种效应促进了氧还原反应过程中弱结晶LiO薄膜的生长,在析氧反应过程中更容易分解,从而增强了双功能催化动力学。当用于非水锂氧电池的正极时,In-O-MoS@Ru在25℃下,在200 mA g时显示出0.37 V的过电位和284次循环的循环寿命,最终放电比容量为1000 mAh g。