Suppr超能文献

公众对英国、美国、加拿大和澳大利亚的基因组数据共享的信任。

Trust in genomic data sharing among members of the general public in the UK, USA, Canada and Australia.

机构信息

Society and Ethics Research, Connecting Science, Wellcome Genome Campus, Cambridge, UK.

Institute of Public Health, University of Cambridge, Cambridge, UK.

出版信息

Hum Genet. 2019 Dec;138(11-12):1237-1246. doi: 10.1007/s00439-019-02062-0. Epub 2019 Sep 17.

Abstract

Trust may be important in shaping public attitudes to genetics and intentions to participate in genomics research and big data initiatives. As such, we examined trust in data sharing among the general public. A cross-sectional online survey collected responses from representative publics in the USA, Canada, UK and Australia (n = 8967). Participants were most likely to trust their medical doctor and less likely to trust other entities named. Company researchers were least likely to be trusted. Low, Variable and High Trust classes were defined using latent class analysis. Members of the High Trust class were more likely to be under 50 years, male, with children, hold religious beliefs, have personal experience of genetics and be from the USA. They were most likely to be willing to donate their genomic and health data for clinical and research uses. The Low Trust class were less reassured than other respondents by laws preventing exploitation of donated information. Variation in trust, its relation to areas of concern about the use of genomic data and potential of legislation are considered. These findings have relevance for efforts to expand genomic medicine and data sharing beyond those with personal experience of genetics or research participants.

摘要

信任可能对公众对遗传学的态度以及参与基因组学研究和大数据计划的意愿产生重要影响。因此,我们调查了公众对数据共享的信任度。我们通过横断面在线调查在美国、加拿大、英国和澳大利亚的代表性公众中收集了回应(n=8967)。参与者最信任他们的医生,而不太信任其他被提名的实体。公司研究人员最不受信任。使用潜在类别分析定义了低、中、高信任类别。高信任类别的成员更可能在 50 岁以下,男性,有孩子,有宗教信仰,有遗传学个人经验,来自美国。他们最有可能愿意为临床和研究用途捐献自己的基因组和健康数据。低信任类别的人对防止利用捐赠信息的法律不如其他受访者感到放心。考虑了信任的变化、与使用基因组数据相关的关注领域的关系以及立法的潜力。这些发现对于努力扩大基因组医学和数据共享的范围具有重要意义,超出了有遗传学个人经验或研究参与者的范围。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7583/6874520/a941ee1ff082/439_2019_2062_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验