Beijing Key Laboratory of Environmental Science and Engineering, School of Materials Science and Engineering , Beijing Institute of Technology , Beijing 100081 , PR China.
Collaborative Innovation Center of Electric Vehicles in Beijing , Beijing 100081 , PR China.
ACS Appl Mater Interfaces. 2019 Oct 16;11(41):37812-37821. doi: 10.1021/acsami.9b14003. Epub 2019 Oct 1.
Sodium-ion batteries (SIBs) have attracted wide attention because of their prospects for grid-scale electrical regulation and cost effectiveness of sodium. In this regard, iron oxides (FeO) are considered as one of the most promising anode candidates due to their high theoretical capacity and low cost. Unfortunately, the utilization of FeO anodes suffers from sluggish reaction kinetics and significant lattice variation, causing insufficient rate performance and fast capacity degradation during the sodiation/desodiation process. In this study, Mn ions are incorporated through interstitial sites into a FeO lattice to form the Mn-incorporated FeO/graphene (M-FeO/G) composites through a facile hydrothermal method. Confirmed by XRD Rietveld refinement and the first-principles calculation, Mn occupation into the body structure can effectively condense the electron density around the Fermi level and thus contributes to the increased electrical conductivity and improved electrochemical properties. Accordingly, the MFeO/G composite demonstrates a high reversible capacity of 439.8 mA h g at a current density of 100 mA g over 200 cycles. Even at a high current density of 1 A g, the M-FeO/G composites remain stable for over 1200 cycles, delivering a capacity of 210 mA h g. Coupled with a NaV(PO)-type cathode, the Mn-incorporated FeO/G composites demonstrate good suitability in full SIBs (161.2 mA h g at the current density of 1 A g after 100 cycles). The regulation of Mn ions in the FeO lattice provides insights into the optimization of metal oxide anode candidates for their application in SIBs.
钠离子电池(SIBs)因其在电网级电力调节方面的前景和钠的成本效益而受到广泛关注。在这方面,氧化铁(FeO)由于其高理论容量和低成本而被认为是最有前途的阳极候选材料之一。不幸的是,FeO 阳极的利用受到缓慢的反应动力学和显著的晶格变化的限制,导致在钠化/去钠化过程中,其倍率性能不足且容量快速衰减。在本研究中,通过简便的水热法,通过间隙位点将 Mn 离子掺入到 FeO 晶格中,形成 Mn 掺杂的 FeO/石墨烯(M-FeO/G)复合材料。通过 XRD Rietveld 精修和第一性原理计算证实,Mn 占据体结构可以有效地凝聚费米能级附近的电子密度,从而提高电导率并改善电化学性能。因此,MFeO/G 复合材料在 100 mA g 的电流密度下,经过 200 次循环后,具有 439.8 mA h g 的高可逆容量。即使在 1 A g 的高电流密度下,M-FeO/G 复合材料也能稳定运行超过 1200 次,容量为 210 mA h g。与 NaV(PO)4 型阴极结合,Mn 掺杂的 FeO/G 复合材料在全 SIBs 中表现出良好的适用性(在 1 A g 的电流密度下,经过 100 次循环后,为 161.2 mA h g)。Mn 离子在 FeO 晶格中的调节为优化金属氧化物阳极候选材料以应用于 SIBs 提供了思路。
ACS Appl Mater Interfaces. 2019-10-1
ACS Appl Mater Interfaces. 2016-11-4
ACS Appl Mater Interfaces. 2016-9-28
ACS Appl Mater Interfaces. 2018-1-18
ACS Appl Mater Interfaces. 2018-3-9
Sci Technol Adv Mater. 2021-6-4