Department of Chemistry, Quaid-e-Azam University, Islamabad, Pakistan and Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
Center for Energy Convergence, Korea Institute of Science and Technology, Seoul 136-791, Republic of Korea.
Nanoscale. 2017 Jul 20;9(28):9859-9871. doi: 10.1039/c7nr01417a.
In order to improve the electrochemical kinetics of anatase titania (TiO), Mn-doped TiO incorporated with functionalized multiwall carbon nanotubes (MWCNTs) has been prepared by a modified hydrothermal method and tested for both lithium (LIB) and sodium-ion battery (SIB) anodes. The size of the TiO particles is controlled to ∼35-40 nm, with almost even distribution on the MWCNTs surface. The nanostructuring and appropriate doping of cost-effective manganese into the TiO host improved the electrochemical performance in terms of high rate capability and specific capacity for both the rechargeable battery systems. For the LIBs, the charge capacity of the 5% Mn-TiO/MWCNT anode is 226.3 mA h g in the first cycle, and is retained at 176.4 mA h g after 80 cycles as compared with the SIBs, in which the charge capacity is 152.1 mA h g in the first cycle, and is retained at 121.4 mA h g after 80 cycles. After testing the electrodes at a high current rate of 20C, the nanocomposite electrode can still demonstrate charge capacities of 131.2 and 117.2 mA h g at a 0.1C rate for LIBs and SIBs, respectively. The incorporation of Mn-ions (2+, 4+) is found to play a crucial role in terms of defects and vacancy creation, increasing conduction band electrons and lattice expansion to facilitate alkali metal ion diffusion for superior electrochemical performance. The combination of heteroatom doping and use of a highly conductive additive in the form of MWCNTs has resulted in excellent electrode integrity, high ion accessibility, and fast electron transport. Its outstanding cycling stability and remarkable rate performance make the 5% Mn-TiO/MWCNT a promising anode material for high-performance LIBs and SIBs.
为了提高锐钛矿 TiO 的电化学动力学性能,通过改进的水热法制备了掺锰 TiO 与功能化多壁碳纳米管 (MWCNTs) 的复合材料,并将其用作锂离子 (LIB) 和钠离子 (SIB) 电池的阳极进行了测试。TiO 颗粒的尺寸控制在约 35-40nm,几乎均匀分布在 MWCNTs 表面。通过将具有成本效益的锰纳米结构化并适当掺杂到 TiO 主体中,提高了在这两个可再充电电池系统中倍率性能和比容量的电化学性能。对于 LIBs,5%Mn-TiO/MWCNT 阳极在第一个循环中的充电容量为 226.3 mA h g,80 次循环后保持在 176.4 mA h g,而对于 SIBs,在第一个循环中的充电容量为 152.1 mA h g,80 次循环后保持在 121.4 mA h g。在高电流速率 20C 下测试电极后,纳米复合材料电极仍可在 0.1C 速率下分别为 LIBs 和 SIBs 提供 131.2 和 117.2 mA h g 的充电容量。发现 Mn 离子(2+,4+)的掺入在缺陷和空位的产生方面起着至关重要的作用,增加了导带电子和晶格膨胀,以促进碱金属离子扩散,从而实现优异的电化学性能。杂原子掺杂和以 MWCNTs 形式使用高导电性添加剂的组合导致了优异的电极完整性、高离子可及性和快速电子传输。其出色的循环稳定性和显著的倍率性能使 5%Mn-TiO/MWCNT 成为高性能 LIBs 和 SIBs 的有前途的阳极材料。