Suppr超能文献

通过一种新的计算方法揭示自我繁殖系统中的进化最优策略。

Revealing Evolutionarily Optimal Strategies in Self-Reproducing Systems via a New Computational Approach.

机构信息

Department of Mathematics, University of Leicester, Leicester, UK.

Shirshov Institute of Oceanology, Moscow, Russia.

出版信息

Bull Math Biol. 2019 Nov;81(11):4701-4725. doi: 10.1007/s11538-019-00663-4. Epub 2019 Nov 18.

Abstract

Modelling the evolution of complex life history traits and behavioural patterns observed in the natural world is a challenging task. Here, we develop a novel computational method to obtain evolutionarily optimal life history traits/behavioural patterns in population models with a strong inheritance. The new method is based on the reconstruction of evolutionary fitness using underlying equations for population dynamics and it can be applied to self-reproducing systems (including complicated age-structured models), where fitness does not depend on initial conditions, however, it can be extended to some frequency-dependent cases. The technique provides us with a tool to efficiently explore both scalar-valued and function-valued traits with any required accuracy. Moreover, the method can be implemented even in the case where we ignore the underlying model equations and only have population dynamics time series. As a meaningful ecological case study, we explore optimal strategies of diel vertical migration (DVM) of herbivorous zooplankton in the vertical water column which is a widespread phenomenon in both oceans and lakes, generally considered to be the largest synchronised movement of biomass on Earth. We reveal optimal trajectories of daily vertical motion of zooplankton grazers in the water column depending on the presence of food and predators. Unlike previous studies, we explore both scenarios of DVM with static and dynamic predators. We find that the optimal pattern of DVM drastically changes in the presence of dynamic predation. Namely, with an increase in the amount of food available for zooplankton grazers, the amplitude of DVM progressively increases, whereas for static predators DVM would abruptly cease.

摘要

在自然界中对复杂的生活史特征和行为模式进行建模是一项具有挑战性的任务。在这里,我们开发了一种新的计算方法,用于在具有强遗传的种群模型中获得进化最优的生活史特征/行为模式。该新方法基于使用种群动态的基本方程来重建进化适应性,并且可以应用于自我繁殖系统(包括复杂的年龄结构模型),其中适应性不依赖于初始条件,但可以扩展到某些频率依赖的情况。该技术为我们提供了一种工具,可有效地探索任何所需精度的标量值和函数值特征。此外,即使我们忽略了基本模型方程,并且仅具有种群动态时间序列,该方法也可以实施。作为一个有意义的生态案例研究,我们探索了草食性浮游动物在垂直水柱中昼夜垂直迁移(DVM)的最优策略,这是海洋和湖泊中普遍存在的现象,通常被认为是地球上最大规模的生物量同步运动。我们根据食物和捕食者的存在揭示了浮游动物食草动物在水柱中每日垂直运动的最优轨迹。与以前的研究不同,我们探索了具有静态和动态捕食者的 DVM 两种情况。我们发现,在存在动态捕食的情况下,DVM 的最优模式会发生剧烈变化。也就是说,随着可用于浮游动物食草动物的食物量的增加,DVM 的幅度逐渐增加,而对于静态捕食者,DVM 会突然停止。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cff/6874526/4df53261ce24/11538_2019_663_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验