Suppr超能文献

DNMHMM:一种基于隐马尔可夫模型识别多种细胞类型中差异核小体区域的方法。

DNMHMM: An approach to identify the differential nucleosome regions in multiple cell types based on a Hidden Markov Model.

作者信息

Xie Jiahao, Cai Yiran, Li Huamei, Wu Jiahui, Zhao Xinlei, Luo Kun, Sharma Amit, Xie Jianming, Sun Xiao, Liu Hongde

机构信息

State Key Laboratory of Bioelectronics, School of Biological Science & Medical Engineering, Southeast University, Nanjing 210096, China.

Department of Neurosurgery, Xinjiang Evidence-Based Medicine Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi 830054, China.

出版信息

Biosystems. 2019 Nov;185:104033. doi: 10.1016/j.biosystems.2019.104033. Epub 2019 Sep 18.

Abstract

Nucleosome occupancy changes across cell types and environmental conditions and such changes often have profound influence in transcription. It's of importance to identify the differential nucleosome regions (DNRs) where the nucleosome occupancy level differs across cell types. Here we developed DNMHMM, a Hidden Markov Model (HMM) based algorithm, to detect the DNRs with nucleosomal DNA sequenced dataset. The performance evaluation indicates that DNMHMM is advisable for multi-cell type comparison. Upon testing this model in yeast mutants, where the modifiable histone residues were mutated into alanine, we found that DNA sequences of the dynamic nucleosomes lack 10-11 bp periodicities and harbor binding motifs of the nucleosome remodelling complex. Moreover, the highly expressed genes have more dynamic nucleosomes at promoters. We further compared nucleosome occupancy between resting and activated human CD4 T cells with this model. It was revealed that during the activation of CD4 T cells, dynamic nucleosomes are enriched at regulatory sites, hence, up to some extent can affect the gene expression level. Taken together, DNMHMM offers the possibility to access precise nucleosome dynamics among multiple cell types and also can describe the closer association between nucleosome and transcription.

摘要

核小体占有率在不同细胞类型和环境条件下会发生变化,并且这种变化常常对转录产生深远影响。识别不同细胞类型中核小体占有率水平不同的差异核小体区域(DNR)非常重要。在此,我们开发了DNMHMM,一种基于隐马尔可夫模型(HMM)的算法,用于通过核小体DNA测序数据集检测DNR。性能评估表明DNMHMM适用于多细胞类型比较。在酵母突变体中测试该模型时,其中可修饰的组蛋白残基突变为丙氨酸,我们发现动态核小体的DNA序列缺乏10 - 11 bp的周期性,并含有核小体重塑复合物的结合基序。此外,高表达基因在启动子处具有更多动态核小体。我们进一步用该模型比较了静息和活化的人CD4 T细胞之间的核小体占有率。结果显示,在CD4 T细胞活化过程中,动态核小体在调控位点富集,因此在一定程度上会影响基因表达水平。综上所述,DNMHMM提供了在多种细胞类型中获取精确核小体动态变化的可能性,并且还能描述核小体与转录之间更紧密的关联。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验