Suppr超能文献

(P)ns/d 态在氪中的自电离动力学通过非共线波混频与阿秒极紫外和少周期近红外脉冲探测。

Autoionization dynamics of (P)ns/d states in krypton probed by noncollinear wave mixing with attosecond extreme ultraviolet and few-cycle near infrared pulses.

机构信息

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.

出版信息

J Chem Phys. 2019 Sep 21;151(11):114305. doi: 10.1063/1.5113912.

Abstract

The autoionization dynamics of the (P)ns/d Rydberg states in krypton are investigated using spatially isolated wave-mixing signals generated with a short train of subfemtosecond extreme ultraviolet (XUV) pulses and noncollinear, few-cycle near infrared pulses. Despite ubiquitous quantum beat oscillations from XUV-induced coherences within the excited-state manifold, these wave-mixing spectra allow for the simultaneous evaluation of autoionization lifetimes from a series of Rydberg states above the first ionization potential. Experimentally measured lifetimes of 22 ± 8 fs, 33 ± 6 fs, and 49 ± 6 fs for the wave-mixing signals emitting from the (P)6d/8s, (P)7d/9s, and (P)8d/10s resonances compare favorably with lifetimes for the (P)6d, 7d, and 8d Rydberg states determined from spectral linewidths. Analysis of the quantum beats reveals that the enhancement of wave-mixing pathways that couple the (P)nd states to themselves leads to individual reporter state-dependent decays in the wave-mixing signals. The results demonstrate the promise of wave-mixing spectroscopies with subfemtosecond XUV pulses to provide valuable insights into processes governed by electronic dynamics.

摘要

利用短串亚飞秒极紫外 (XUV) 脉冲和非共线、少周期近红外脉冲产生的空间分离的波混信号,研究了氪中 (P)ns/d 里德伯态的自电离动力学。尽管在激发态能级中普遍存在 XUV 诱导的相干量子拍频振荡,但这些波混光谱允许同时评估一系列高于第一电离势的里德伯态的自电离寿命。从 (P)6d/8s、(P)7d/9s 和 (P)8d/10s 共振处发出的波混信号的实验测量寿命为 22±8 fs、33±6 fs 和 49±6 fs,与从光谱线宽确定的 (P)6d、7d 和 8d 里德伯态的寿命相比,结果令人满意。量子拍频的分析表明,增强将 (P)nd 态耦合到自身的波混途径,导致波混信号中单个报告态相关的衰减。这些结果表明,利用亚飞秒 XUV 脉冲进行波混光谱学具有很大的潜力,可以为电子动力学控制的过程提供有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验