Suppr超能文献

使用解析粉末平均技术的快速电子顺磁共振魔角旋转模拟。

Fast electron paramagnetic resonance magic angle spinning simulations using analytical powder averaging techniques.

机构信息

Department of Chemistry, Washington University in St. Louis, St. Louis, Missouri 63130, USA.

出版信息

J Chem Phys. 2019 Sep 21;151(11):114107. doi: 10.1063/1.5113598.

Abstract

Simulations describing the spin physics underpinning nuclear magnetic resonance (NMR) and electron paramagnetic resonance (EPR) spectroscopy play an important role in the design of new experiments. When experiments are performed in the solid state, samples are commonly composed of powders or glasses, with molecules oriented at a large number of angles with respect to the laboratory frame. These powder angles must be represented in simulations to account for anisotropic interactions. Numerical techniques are typically used to accurately compute such powder averages. A large number of Euler angles are usually required, leading to lengthy simulation times. This is particularly true in broad spectra, such as those observed in EPR. The combination of the traditionally separate techniques of EPR and magic angle spinning (MAS) NMR could play an important role in future electron detected experiments, combined with dynamic nuclear polarization, which will allow for exceptional detection sensitivity of NMR spin coherences. Here, we present a method of reducing the required number of Euler angles in magnetic resonance simulations by analytically performing the powder average over one of the Euler angles in the static and MAS cases for the TEMPO nitroxide radical in a 7 T field. In the static case, this leads to a 97.5% reduction in simulation time over the fully numerical case and reproduces the expected spinning sideband manifold when simulated with a MAS frequency of 150 kHz. This technique is applicable to more traditional NMR experiments as well, such as those involving quadrupolar nuclei or multiple dimensions.

摘要

描述核磁共振(NMR)和电子顺磁共振(EPR)光谱学中自旋物理的模拟在新实验的设计中起着重要作用。当在固态中进行实验时,样品通常由粉末或玻璃组成,分子相对于实验室框架以大量角度取向。这些粉末角度必须在模拟中表示,以考虑各向异性相互作用。通常使用数值技术来准确计算这种粉末平均值。通常需要大量的欧拉角,导致模拟时间长。在宽谱,如 EPR 中观察到的那些,情况尤其如此。EPR 和魔角旋转(MAS)NMR 的传统分离技术的结合,再结合动态核极化,将在未来的电子检测实验中发挥重要作用,这将允许 NMR 自旋相干的非凡检测灵敏度。在这里,我们提出了一种通过在静态和 MAS 情况下对 TEMPO 氮氧自由基在 7 T 场中的一个欧拉角进行粉末平均来减少磁共振模拟中所需欧拉角数量的方法。在静态情况下,与完全数值情况相比,模拟时间减少了 97.5%,并且当以 150 kHz 的 MAS 频率模拟时,它再现了预期的旋转边带谱。该技术也适用于更传统的 NMR 实验,例如涉及四极核或多个维度的实验。

相似文献

3
Theoretical aspects of Magic Angle Spinning - Dynamic Nuclear Polarization.
J Magn Reson. 2015 Sep;258:102-20. doi: 10.1016/j.jmr.2015.07.001. Epub 2015 Jul 13.
4
Verdazyl-ribose: A new radical for solid-state dynamic nuclear polarization at high magnetic field.
J Magn Reson. 2018 Apr;289:122-131. doi: 10.1016/j.jmr.2018.02.016. Epub 2018 Mar 1.
6
Broadband adiabatic inversion cross-polarization phenomena in the NMR of rotating solids.
Solid State Nucl Magn Reson. 2018 Oct;94:31-53. doi: 10.1016/j.ssnmr.2018.08.003. Epub 2018 Aug 10.
7
High-field pulsed EPR spectroscopy under magic angle spinning.
Sci Adv. 2024 Aug 30;10(35):eadq6073. doi: 10.1126/sciadv.adq6073.
8
Molecular dynamics in paramagnetic materials as studied by magic-angle spinning 2H NMR spectra.
J Phys Chem A. 2007 Dec 20;111(50):12954-60. doi: 10.1021/jp075405l. Epub 2007 Nov 21.
9
Solid-state NMR indirect detection of nuclei experiencing large anisotropic interactions using spinning sideband-selective pulses.
Solid State Nucl Magn Reson. 2015 Nov;72:104-17. doi: 10.1016/j.ssnmr.2015.09.003. Epub 2015 Sep 9.
10
Probing quadrupolar nuclei by solid-state NMR spectroscopy: recent advances.
Top Curr Chem. 2012;306:119-88. doi: 10.1007/128_2011_141.

引用本文的文献

1
High-field pulsed EPR spectroscopy under magic angle spinning.
Sci Adv. 2024 Aug 30;10(35):eadq6073. doi: 10.1126/sciadv.adq6073.
2
TensorView for MATLAB: Visualizing tensors with Euler angle decoding.
Solid State Nucl Magn Reson. 2023 Feb;123:101849. doi: 10.1016/j.ssnmr.2022.101849. Epub 2022 Dec 21.

本文引用的文献

1
Laser-driven semiconductor switch for generating nanosecond pulses from a megawatt gyrotron.
Appl Phys Lett. 2019 Apr 22;114(16):164102. doi: 10.1063/1.5093639. Epub 2019 Apr 24.
2
High-Field Magic Angle Spinning Dynamic Nuclear Polarization Using Radicals Created by γ-Irradiation.
J Phys Chem Lett. 2019 Sep 5;10(17):4770-4776. doi: 10.1021/acs.jpclett.9b01655. Epub 2019 Aug 7.
4
Sensitivity analysis of magic angle spinning dynamic nuclear polarization below 6 K.
J Magn Reson. 2019 Aug;305:51-57. doi: 10.1016/j.jmr.2019.05.011. Epub 2019 Jun 4.
5
A Factor Two Improvement in High-Field Dynamic Nuclear Polarization from Gd(III) Complexes by Design.
J Am Chem Soc. 2019 Jun 5;141(22):8746-8751. doi: 10.1021/jacs.9b03723. Epub 2019 May 24.
6
Direct dynamic nuclear polarization of N and C spins at 14.1 T using a trityl radical and magic angle spinning.
Solid State Nucl Magn Reson. 2019 Aug;100:85-91. doi: 10.1016/j.ssnmr.2019.03.009. Epub 2019 Apr 2.
7
Electron Decoupling with Chirped Microwave Pulses for Rapid Signal Acquisition and Electron Saturation Recovery.
Angew Chem Int Ed Engl. 2019 May 27;58(22):7259-7262. doi: 10.1002/anie.201900139. Epub 2019 Apr 25.
8
Time-optimized pulsed dynamic nuclear polarization.
Sci Adv. 2019 Jan 18;5(1):eaav6909. doi: 10.1126/sciadv.aav6909. eCollection 2019 Jan.
9
Spinning faster: protein NMR at MAS frequencies up to 126 kHz.
J Biomol NMR. 2019 Feb;73(1-2):19-29. doi: 10.1007/s10858-018-0219-9. Epub 2019 Jan 24.
10
TensorView: A software tool for displaying NMR tensors.
Magn Reson Chem. 2019 May;57(5):211-223. doi: 10.1002/mrc.4793. Epub 2018 Nov 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验